首页> 外文期刊>Signal processing >A Generalized Data Windowing Scheme For Adaptive Conjugate Gradient Algorithms
【24h】

A Generalized Data Windowing Scheme For Adaptive Conjugate Gradient Algorithms

机译:自适应共轭梯度算法的通用数据窗口化方案

获取原文
获取原文并翻译 | 示例

摘要

The performance of the modified adaptive conjugate gradient (CG) algorithms based on the iterative CG method for adaptive filtering is highly related to the ways of estimating the correlation matrix and the cross-correlation vector. The existing approaches of implementing the CG algorithms using the data windows of exponential form or sliding form result in either loss of convergence or increase in misadjustment. This paper presents and analyzes a new approach to the implementation of the CG algorithms for adaptive filtering by using a generalized data windowing scheme. For the new modified CG algorithms, we show that the convergence speed is accelerated, the misadjustment and tracking capability comparable to those of the recursive least squares (RLS) algorithm are achieved. Computer simulations demonstrated in the framework of linear system modeling problem show the improvements of the new modifications.
机译:基于迭代CG方法进行自适应滤波的改进的自适应共轭梯度(CG)算法的性能与估计相关矩阵和互相关向量的方式高度相关。使用指数形式或滑动形式的数据窗口来实现CG算法的现有方法会导致收敛性下降或失调增加。本文提出并分析了一种通过使用通用数据窗口化方案来实现用于自适应滤波的CG算法的新方法。对于新的改进的CG算法,我们证明了其收敛速度得到了提高,可以实现与递归最小二乘(RLS)算法相当的失调和跟踪能力。在线性系统建模问题的框架中演示的计算机仿真显示了新修改的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号