首页> 外文期刊>Signal processing >Improving frequency estimation performance for burst transmissions by optimising reference symbol distribution
【24h】

Improving frequency estimation performance for burst transmissions by optimising reference symbol distribution

机译:通过优化参考符号分布来提高突发传输的频率估计性能

获取原文
获取原文并翻译 | 示例

摘要

The theoretical lower bound on data-aided (DA) frequency estimation error for bursts transmissions containing reference symbols is known to decrease if the reference symbols are distributed throughout the burst. In practice, DA frequency estimators exhibit threshold behaviour where the performance rapidly degrades if the signal-to-noise ratio (SNR) is lower than a certain threshold value. Lowering the SNR threshold is often an important goal in the design of both estimators and signal formats.rnThis article examines DA frequency estimation for burst transmissions, specifically analysing the threshold behaviour for both regular and irregular reference symbol distributions. We demonstrate through analysis and simulation results that threshold behaviour can be determined from the frequency estimation likelihood function, particularly the magnitude and location of secondary likelihood peaks. We also demonstrate, for a specific test case, that significant improvements in threshold performance can be gained with irregular distribution of reference symbols, with little degradation in the frequency estimation error.rnThe methods described in this paper allow the signal designer to select a reference symbol distribution to optimise and trade-off estimation performance parameters such as estimation error, acquisition range, outlier probability and threshold behaviour.
机译:如果参考符号分布在整个突发中,则对于包含参考符号的突发传输,数据辅助(DA)频率估计误差的理论下限将减小。实际上,DA频率估计器会表现出阈值行为,如果信噪比(SNR)低于某个阈值,性能会迅速下降。降低SNR阈值通常是估计器和信号格式设计的重要目标。本文探讨了突发传输的DA频率估计,特别是分析了规则和不规则参考符号分布的阈值行为。我们通过分析和仿真结果证明,可以从频率估计似然函数确定阈值行为,尤其是次要似然峰的大小和位置。我们还证明,对于一个特定的测试案例,通过不规则分布的参考符号可以获得阈值性能的显着改善,而频率估计误差几乎不会降低.rn本文所述的方法允许信号设计人员选择参考符号分布以优化和权衡估计性能参数,例如估计误差,采集范围,离群概率和阈值行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号