首页> 外文期刊>Signal processing >Unsupervised segmentation of new semi-Markov chains hidden with long dependence noise
【24h】

Unsupervised segmentation of new semi-Markov chains hidden with long dependence noise

机译:隐藏有长依赖性噪声的新半马尔可夫链的无监督分割

获取原文
获取原文并翻译 | 示例

摘要

The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which X is an unobservable Markov chain, and Y is its observable "noisy version". The chain X is a Markov one and the components of Y are independent conditionally on X. Such a model can be extended in two directions: (ⅰ) X is a semi-Markov chain and (ⅱ) the distribution of Y conditionally on X is a "long dependence" one. Until now these two extensions have been considered separately and the contribution of this paper is to consider them simultaneously. A new "semi-Markov chain hidden with long dependence noise" model is proposed and it is specified how it can be used to recover X from Y in an unsupervised manner. In addition, a new family of semi-Markov chains is proposed. Its advantages with respect to the classical formulations are the low computer time needed to perform different classical computations and the facility of its parameter estimation. Some experiments showing the interest of this new semi-Markov chain hidden with long dependence noise are also provided.
机译:隐马尔可夫链(HMC)模型是几个随机序列(X,Y),其中X是不可观察的马尔可夫链,而Y是其可观察的“嘈杂版本”。链X是一个马尔可夫链,并且Y的成分在条件上独立于X。这种模型可以在两个方向上扩展:(ⅰ)X是半马氏链,并且(ⅱ)Y在条件上在X上的分布是一个“长期依赖”的人。到现在为止,这两个扩展已经被分别考虑,并且本文的贡献是同时考虑它们。提出了一种新的“隐藏有长依赖性噪声的半马尔可夫链”模型,并指出了如何以无监督的方式从Y中恢复X。此外,提出了一个新的半马尔可夫链族。它相对于经典公式的优点是执行不同经典计算所需的计算机时间短,并且其参数估计方便。还提供了一些实验,表明对这种隐藏了长依赖性噪声的新半马尔可夫链的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号