首页> 外文期刊>Signal processing >On-line versus off-line accelerated kernel feature analysis: Application to computer-aided detection of polyps in CT colonography
【24h】

On-line versus off-line accelerated kernel feature analysis: Application to computer-aided detection of polyps in CT colonography

机译:在线与离线加速内核特征分析:在计算机辅助CT结肠造影术中检测息肉的应用

获取原文
获取原文并翻译 | 示例

摘要

A semi-supervised learning method, the on-line accelerated kernel feature analysis (Online AKFA) is presented. In On-line AKFA, features are extracted while data are being fed to the algorithm in small batches as the algorithm proceeds. The paper compares and contrasts the use of On-line AKFA and Off-line AKFA in CT colonography. On-line AKFA provides the flexibility to allow the feature space to dynamically adjust to changes in the input data with time during the training phase. The computational time, reconstruction accuracy, projection variance, and classification performance of the proposed method are experimentally evaluated for kernel principal component analysis (KPCA), Off-line AKFA, and On-line AKFA. Experimental results demonstrate a significant reduction in computation time for On-line AKFA compared to the other feature extraction methods considered in this paper.
机译:提出了一种半监督学习方法,即在线加速核特征分析(Online AKFA)。在在线AKFA中,随着算法的进行,在将数据以小批量的形式馈送到算法时提取特征。本文比较并对比了在线AKFA和离线AKFA在CT结肠造影中的使用。在线AKFA提供了灵活性,允许功能空间在训练阶段随时间动态调整以适应输入数据的变化。对于内核主成分分析(KPCA),离线AKFA和在线AKFA,通过实验评估了该方法的计算时间,重构精度,投影方差和分类性能。实验结果表明,与本文考虑的其他特征提取方法相比,在线AKFA的计算时间显着减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号