首页> 外文期刊>Signal processing >Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications
【24h】

Projected gradient method for kernel discriminant nonnegative matrix factorization and the applications

机译:核判别非负矩阵分解的投影梯度法及其应用

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) is a technique for analyzing the data structure when nonnegative constraints are imposed. However, NMF aims at minimizing the objective function from the viewpoint of data reconstruction and thus it may produce undesirable performances in classification tasks. In this paper, we develop a novel NMF algorithm (called KDNMF) by optimizing the objective function in a feature space under nonnegative constraints and discriminant constraints. The KDNMF method exploits the geometrical structure of data points and seeks the tradeoff between data reconstruction errors and the geometrical structure of data. The projected gradient method is used to solve KDNMF since directly using the multiplicative update algorithm to update nonnegative matrices is impractical for Gaussian kernels. Experiments on facial expression images and face images are conducted to show the effectiveness of the proposed method.
机译:非负矩阵分解(NMF)是一种在施加非负约束时用于分析数据结构的技术。但是,NMF旨在从数据重建的角度使目标函数最小化,因此在分类任务中可能会产生不理想的性能。在本文中,我们通过在非负约束和判别约束下优化特征空间中的目标函数,开发了一种新颖的NMF算法(称为KDNMF)。 KDNMF方法利用数据点的几何结构,并在数据重构误差和数据的几何结构之间寻求折衷。投影梯度法用于求解KDNMF,因为对于高斯内核,直接使用乘法更新算法更新非负矩阵是不切实际的。通过面部表情图像和面部图像实验,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号