首页> 外文期刊>Signal processing >Joint blind source separation by generalized joint diagonalization of cumulant matrices
【24h】

Joint blind source separation by generalized joint diagonalization of cumulant matrices

机译:累积矩阵的广义联合对角化联合盲源分离

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we show that the joint blind source separation (JBSS) problem can be solved by jointly diagonalizing cumulant matrices of any order higher than one, including the correlation matrices and the fourth-order cumulant matrices. We introduce an efficient iterative generalized joint diagonalization algorithm such that a series of orthogonal procrustes problems are solved. We present simulation results to show that the new algorithms can reliably solve the permutation ambiguity in JBSS and that they offer superior performance compared with existing multiset canonical correlation analysis (MCCA) and independent vector analysis (IVA) approaches. Experiment on real-world data for separation of fetal heartbeat in electrocardiogram (ECG) data demonstrates a new application of JBSS, and the success of the new algorithms for a real-world problem.
机译:在本文中,我们表明联合盲源分离(JBSS)问题可以通过联合对角化任何大于一的阶累积量矩阵来解决,包括相关矩阵和四阶累积量矩阵。我们引入了一种有效的迭代广义联合对角化算法,从而解决了一系列正交过程问题。我们提供的仿真结果表明,新算法可以可靠地解决JBSS中的置换歧义,并且与现有的多集规范相关分析(MCCA)和独立矢量分析(IVA)方法相比,它们提供了更高的性能。对用于在心电图(ECG)数据中分离胎儿心跳的真实世界数据的实验证明了JBSS的新应用,以及针对真实世界问题的新算法的成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号