首页> 外文期刊>Circuits, systems, and signal processing >Blind Separation of Noncircular Sources Via Approximate Joint Diagonalization of Augmented Charrelation Matrices
【24h】

Blind Separation of Noncircular Sources Via Approximate Joint Diagonalization of Augmented Charrelation Matrices

机译:通过增强Charrelation矩阵的近似联合对角化来盲分离非圆形源

获取原文
获取原文并翻译 | 示例

摘要

An augmented charrelation matrix (ACM), which can utilize both the conventional and the conjugate statistical information in the complex domain, is proposed. The ACM additionally makes use of the conjugate Hessian matrix (namely conjugate charrelation matrix) of the observations of noncircular sources. A blind separation scheme built on the approximate joint diagonalization (AJD) principle is introduced, which precedes some numerical examples to demonstrate the improved performance of the ACM-AJD approach compared with some algorithms in the literature.
机译:提出了一种可以在复杂域中同时利用常规统计信息和共轭统计信息的增强字符关系矩阵(ACM)。 ACM还利用非圆形源观测的共轭Hessian矩阵(即共轭charrelation矩阵)。介绍了一种基于近似联合对角化(AJD)原理的盲分离方案,该方案先于一些数值示例,以证明与文献中的某些算法相比,ACM-AJD方法的性能有所提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号