首页> 外文期刊>Signal processing >Direct, prediction- and smoothing-based Kalman and particle filter algorithms
【24h】

Direct, prediction- and smoothing-based Kalman and particle filter algorithms

机译:基于直接,预测和平滑的卡尔曼和粒子滤波算法

获取原文
获取原文并翻译 | 示例

摘要

We address the recursive computation of the filtering probability density function (pdf) P_n|n in a hidden Markov chain (HMC) model. We first observe that the classical path P_(n-1|n-1) →P_(n|n-1)→P_n|n is not the only possible one that enables to compute p_m recursively, and we explore the direct, prediction-based (P-based) and smoothing-based (S-based) recursive loops for computing p_n|n. We next propose a common methodology for computing these equations in practice. Since each path can be decomposed into an updating step and a propagation step, in the linear Gaussian case these two steps are implemented by Gaussian transforms, and in the general case by elementary simulation techniques. By proceeding this way we routinely obtain in parallel, for each filtering path, one set of Kalman filter (KF) equations and one generic sequential Monte Carlo (SMC) algorithm. Finally we classify in a common framework four KF (two of which are original), which themselves can be associated to four generic SMC algorithms (two of which are original). We finally compare our algorithms via simulations. S-based filters behave better than P-based ones, and within each class of filters better results are obtained when updating precedes propagation.
机译:我们解决了隐马尔可夫链(HMC)模型中滤波概率密度函数(pdf)P_n | n的递归计算。我们首先观察到经典路径P_(n-1 | n-1)→P_(n | n-1)→P_n | n并不是唯一能够递归计算p_m的路径,我们探索了直接的预测基于p(n的)和基于平滑(s的)的递归循环。接下来,我们提出一种在实践中计算这些方程式的通用方法。由于每个路径都可以分解为更新步骤和传播步骤,因此在线性高斯情况下,这两个步骤都是通过高斯变换来实现的,而在一般情况下是通过基本仿真技术来实现的。通过这种方式,我们可以为每个滤波路径并行地并行获取一组卡尔曼滤波器(KF)方程和一个通用顺序蒙特卡洛(SMC)算法。最后,我们在一个通用框架中对四个KF(其中两个是原始的)进行分类,它们本身可以与四个通用SMC算法(其中两个是原始的)相关联。最后,我们通过仿真比较了我们的算法。基于S的过滤器的性能优于基于P的过滤器,并且在传播之前,在每类过滤器中可获得更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号