首页> 外文期刊>Signal processing >Regulatory component analysis: A semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge
【24h】

Regulatory component analysis: A semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge

机译:监管成分分析:半盲提取方法,以推断具有不完善生物学知识的基因调控网络

获取原文
获取原文并翻译 | 示例

摘要

With the advent of high-throughput biotechnology capable of monitoring genomic signals, it becomes increasingly promising to understand molecular cellular mechanisms through systems biology approaches. One of the active research topics in systems biology is to infer gene transcriptional regulatory networks using various genomic data; this inference problem can be formulated as a linear model with latent signals associated with some regulatory proteins called transcription factors (TFs). As common statistical assumptions may not hold for genomic signals, typical latent variable algorithms such as independent component analysis (ICA) are incapable to reveal underlying true regulatory signals. Liao et al. [1 ] proposed to perform inference using an approach named network component analysis (NCA), the optimization of which is achieved by a least-squares fitting approach with biological knowledge constraints. However, the incompleteness of biological knowledge and its inconsistency with gene expression data are not considered in the original NCA solution, which could greatly affect the inference accuracy. To overcome these limitations, we propose a linear extraction scheme, namely regulatory component analysis (RCA), to infer underlying regulatory signals even with partial biological knowledge. Numerical simulations show a significant improvement of our proposed RCA over NCA, not only when signal-to-noise ratio (SNR) is low but also when the given biological knowledge is incomplete and inconsistent to gene expression data. Furthermore, real biological experiments on Escherkhia coli are performed for regulatory network inference in comparison with several typical linear latent variable methods, which again demonstrates the effectiveness and improved performance of the proposed algorithm.
机译:随着能够监控基因组信号的高通量生物技术的出现,通过系统生物学方法了解分子细胞机制变得越来越有希望。系统生物学中活跃的研究主题之一是利用各种基因组数据推断基因转录调控网络。这个推论问题可以用具有潜在信号的线性模型来表达,该信号与某些称为转录因子(TF)的调节蛋白有关。由于一般的统计假设可能不适用于基因组信号,因此典型的潜在变量算法(例如独立成分分析(ICA))无法揭示潜在的真正调控信号。廖等。 [1]提出使用称为网络成分分析(NCA)的方法进行推理,其优化是通过具有生物学知识约束的最小二乘拟合方法实现的。但是,原始NCA解决方案中未考虑生物学知识的不完整及其与基因表达数据的不一致,这可能会极大地影响推理准确性。为了克服这些限制,我们提出了一种线性提取方案,即调节成分分析(RCA),即使具有部分生物学知识,也可以推断出潜在的调节信号。数值模拟表明,不仅在信噪比(SNR)低时,而且在给定的生物学知识不完整且与基因表达数据不一致时,我们提出的RCA相对于NCA都有显着改进。此外,与几种典型的线性潜在变量方法相比,在大肠杆菌上进行了真实的生物学实验以进行调控网络推断,这再次证明了所提出算法的有效性和改进的性能。

著录项

  • 来源
    《Signal processing》 |2012年第8期|p.1902-1915|共14页
  • 作者单位

    Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA;

    Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA;

    Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA;

    Lombardi Comprehensive Cancer Center and Department of Oncology, Physiology and Biophysics, Georgetown University, Washington, DC 20057, USA;

    Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    transcriptional regulatory network; inference; source extraction; gene expression; genomic signal processing;

    机译:转录调控网络;推理;源提取;基因表达;基因组信号处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号