首页> 外文期刊>Signal processing >A tractable framework for estimating and combining spectral source models for audio source separation
【24h】

A tractable framework for estimating and combining spectral source models for audio source separation

机译:一个易于处理的框架,用于估计和组合频谱源模型以进行音频源分离

获取原文
获取原文并翻译 | 示例

摘要

The underdetermined blind audio source separation (BSS) problem is often addressed in the time-frequency (TF) domain assuming that each TF point is modeled as an independent random variable with sparse distribution. On the other hand, methods based on structured spectral model, such as the Spectral Gaussian Scaled Mixture Models (Spectral-GSMMs) or Spectral Non-negative Matrix Factorization models, perform better because they exploit the statistical diversity of audio source spectrograms, thus allowing to go beyond the simple sparsity assumption. However, in the case of discrete state-based models, such as Spectral-GSMMs, learning the models from the mixture can be computationally very expensive. One of the main problems is that using a classical Expectation-Maximization procedure often leads to an exponential complexity with respect to the number of sources. In this paper, we propose a framework with a linear complexity to learn spectral source models (including discrete state-based models) from noisy source estimates. Moreover, this framework allows combining different probabilistic models that can be seen as a sort of probabilistic fusion. We illustrate that methods based on this framework can significantly improve the BSS performance compared to the state-of-the-art approaches.
机译:假设每个TF点被建模为具有稀疏分布的独立随机变量,则通常会在时频(TF)域中解决欠定的盲音频源分离(BSS)问题。另一方面,基于结构化频谱模型的方法(例如频谱高斯比例混合模型(Spectral-GSMMs)或频谱非负矩阵分解模型)的效果更好,因为它们利用了音频源频谱图的统计多样性,因此可以超越了简单的稀疏假设。但是,在基于离散状态的模型(例如Spectral-GSMM)的情况下,从混合中学习模型可能在计算上非常昂贵。主要问题之一是,使用经典的Expectation-Maximization过程通常会导致有关源数量的指数复杂性。在本文中,我们提出了一个具有线性复杂度的框架,以从噪声源估计中学习频谱源模型(包括基于离散状态的模型)。此外,该框架允许组合不同的概率模型,这些模型可以看作是一种概率融合。我们说明,与最新技术相比,基于此框架的方法可以显着提高BSS性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号