首页> 外文期刊>Signal processing >Multiple-snapshots BSS with general covariance structures: A partial maximum likelihood approach involving weighted joint diagonalization
【24h】

Multiple-snapshots BSS with general covariance structures: A partial maximum likelihood approach involving weighted joint diagonalization

机译:具有通用协方差结构的多快照BSS:涉及加权联合对角化的部分最大似然方法

获取原文
获取原文并翻译 | 示例

摘要

Maximum Likelihood (ML) blind separation of Gaussian sources with different temporal covariance structures generally requires the estimation of the underlying temporal covariance matrices. The possible availability of multiple realizations ("snapshots") of the mixtures (all synchronized to some external stimulus) may enable such estimation. In general, however, since these temporal covariance matrices are high-dimensional, reliable estimation thereof might require a prohibitively large number of snapshots. In this work, we propose to take an alternative, partial and approximate ML approach, which regards a selected set of spatial sample-generalized-correlations of the observations (rather than the observations themselves) as the "front-end" data for the ML estimate. As we show, the implied Correlations-Based approximate ML (CBML) estimate, which can also be regarded as a weighted joint diagonalization approach, requires the estimation of considerably smaller covariance matrices, and can therefore be preferable to the "full" Data-Based ML (DBML) estimate. Therefore, although asymptotically sub-optimal, under sub-asymptotic conditions CBML can outperform the asymptotically optimal DBML, as we demonstrate in simulation.
机译:具有不同时间协方差结构的高斯源的最大似然(ML)盲分离通常需要估计基础时间协方差矩阵。混合物的多种实现(“快照”)(全部都与某些外部刺激同步)的可能可用性可以实现这种估计。但是,通常,由于这些时间协方差矩阵是高维的,因此对其进行可靠的估计可能需要数量惊人的快照。在这项工作中,我们建议采用替代的,部分的和近似的ML方法,该方法将观测值(而不是观测值本身)的一组选定的空间样本广义相关作为ML的“前端”数据估计。正如我们所展示的,隐含的基于相关的近似ML(CBML)估计也可以被视为加权联合对角化方法,它需要估计相当小的协方差矩阵,因此比“完整的”基于数据的估计更可取ML(DBML)估计。因此,尽管渐近次优,但是在次渐近条件下,CBML的性能优于渐近最优DBML,如我们在仿真中所证明的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号