首页> 外文期刊>Signal processing >Dictionary learning based impulse noise removal via L1-L1 minimization
【24h】

Dictionary learning based impulse noise removal via L1-L1 minimization

机译:通过L1-L1最小化基于字典学习的脉冲噪声消除

获取原文
获取原文并翻译 | 示例

摘要

To effectively remove impulse noise in natural images while keeping image details intact, this paper proposes a dictionary learning based impulse noise removal (DL-INR) algorithm, which explores both the strength of the patch-wise adaptive dictionary learning technique to image structure preservation and the robustness possessed by the l_1-norm data-fidelity term to impulse noise cancellation. The restoration problem is mathematically formulated into an l_1-l_1 minimization objective and solved under the augmented Lagrangian framework through a two-level nested iterative procedure. We have compared the DL-INR algorithm to three median filter based methods, two state-of-the-art variational regularization based methods and a fixed dictionary based sparse representation method on restoring impulse noise corrupted natural images. The results suggest that DL-INR has a better ability to suppress impulse noise than other six algorithms and can produce restored images with higher peak signal-to-noise ratio (PSNR).
机译:为了有效地消除自然图像中的脉冲噪声,同时保持图像细节不变,本文提出了一种基于字典学习的脉冲噪声去除算法(DL-INR),该算法探讨了逐点自适应字典学习技术在图像结构保存和处理方面的优势。 l_1-范数数据保真度项具有的鲁棒性以消除脉冲噪声。在数学上将恢复问题公式化为l_1-l_1最小化目标,并通过两级嵌套迭代过程在增强的Lagrangian框架下解决该问题。我们已经将DL-INR算法与三种基于中值滤波器的方法,两种基于最新变分正则化的方法以及基于固定字典的稀疏表示方法来恢复脉冲噪声破坏的自然图像进行了比较。结果表明,DL-INR具有比其他六种算法更好的抑制脉冲噪声的能力,并且可以产生具有更高峰值信噪比(PSNR)的恢复图像。

著录项

  • 来源
    《Signal processing》 |2013年第9期|2696-2708|共13页
  • 作者单位

    School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China,Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies,The University of Sydney, NSW 2006, Australia;

    Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China,Institute of Biomedical and Health Engineering, SIAT, Chinese Academy of Sciences, Shenzhen 5)8055, China;

    Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies,The University of Sydney, NSW 2006, Australia;

    Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies,The University of Sydney, NSW 2006, Australia;

    School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;

    School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China;

    Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies,The University of Sydney, NSW 2006, Australia,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Impulse noise removal; Sparse representation; Dictionary learning; Augmented Lagrangian algorithm;

    机译:脉冲噪声去除;稀疏表示;字典学习;增强拉格朗日算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号