首页> 外文期刊>Signal processing >Multisensor video fusion based on spatial-temporal salience detection
【24h】

Multisensor video fusion based on spatial-temporal salience detection

机译:基于时空显着性检测的多传感器视频融合

获取原文
获取原文并翻译 | 示例

摘要

With three dimensional uniform discrete curvelet transform (3D-UDCT) and spatial-temporal structure tensor, a novel video fusion algorithm for videos with static background images is proposed in this paper. Firstly, the 3D-UDCT is employed to decompose source videos into many subbands with different scales and directions. Secondly, corresponding subbands of source videos are merged with different fusion schemes. Finally, the fused video is obtained by the reverse 3D-UDCT. Especially, when bandpass directional subband coefficients are merged, a spatial-temporal salience detection algorithm based on the structure tensor is performed. And each subband is divided into three types of regions, i.e., regions with temporal moving targets, regions with spatial features of background images, and smooth regions. Then different fusion rules are designed for each type of regions. Compared with some existing fusion methods, the proposed fusion algorithm can not only extract more spatial-temporal salient features from input videos but also perform better in spatial-temporal consistency. In addition, the proposed fusion algorithm can also be extended to fuse videos with dynamic background images by a simple modification. Several sets of experimental results demonstrate the feasibility and validity of the proposed fusion method.
机译:通过三维均匀离散曲波变换(3D-UDCT)和时空结构张量,提出了一种具有静态背景图像的视频融合算法。首先,使用3D-UDCT将源视频分解为具有不同比例和方向的许多子带。其次,将源视频的相应子带与不同的融合方案合并。最后,通过反向3D-UDCT获得融合的视频。特别地,当带通方向子带系数被合并时,执行基于结构张量的时空显着性检测算法。并且每个子带被分成三种类型的区域,即具有时间移动目标的区域,具有背景图像的空间特征的区域以及平滑区域。然后针对每种类型的区域设计不同的融合规则。与现有的一些融合方法相比,该融合算法不仅可以从输入视频中提取更多的时空显着特征,而且在时空一致性方面表现更好。另外,所提出的融合算法还可以通过简单的修改而扩展为融合具有动态背景图像的视频。几组实验结果证明了该融合方法的可行性和有效性。

著录项

  • 来源
    《Signal processing》 |2013年第9期|2485-2499|共15页
  • 作者单位

    Key laboratory of Electronic Equipment Structure Design (Xidian University), Ministry of Education,P.O. Box 183, No. 2 South TaiBai Road, Xi'an, Shaanxi Province 710071, China,Center for Complex Systems, School of Mechano-electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China;

    Center for Complex Systems, School of Mechano-electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China;

    Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Video fusion; Spatial-temporal salience detection; Uniform discrete curvelet transform; Structure tensor;

    机译:视频融合;时空显着性检测;均匀离散曲波变换结构张量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号