首页> 外文期刊>Signal processing >Object tracking under low signal-to-noise-ratio with the instantaneous-possible-moving-position model
【24h】

Object tracking under low signal-to-noise-ratio with the instantaneous-possible-moving-position model

机译:具有瞬时可能移动位置模型的低信噪比下的目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Combing image processing technique and the probabilistic data association (PDA) motion model, we develop a novel framework to solve the problem of object tracking for non-electromechanical system with overwhelming noise background. The new model has two advantages: (1) By integrating the statistical motion model, the movement of object in many non-electromechanical systems could be more precisely simulated than existing ones. (2) Because of the adoption of a global search for optimal model parameters, the proposed model is better to track objects in high noise environment, comparing with other methods that rely on consecutive frames differentiating. We derive the expectation-maximization (EM) algorithm within the proposed model. Its usefulness is demonstrated with both synthesized data and image data set. Model Stability is introduced to quantify the usefulness of the model.
机译:结合图像处理技术和概率数据关联(PDA)运动模型,我们开发了一种新颖的框架来解决噪声背景不佳的非机电系统的对象跟踪问题。新模型具有两个优点:(1)通过集成统计运动模型,可以比现有模型更精确地模拟许多非机电系统中的对象运动。 (2)由于采用了全局搜索的最佳模型参数,与依赖连续帧区分的其他方法相比,该模型更好地跟踪了高噪声环境中的物体。我们在提出的模型中推导了期望最大化(EM)算法。合成数据和图像数据集都证明了其有用性。引入了模型稳定性以量化模型的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号