首页> 外文期刊>Signal processing >Computationally efficient sparsity-inducing coherence spectrum estimation of complete and non-complete data sets
【24h】

Computationally efficient sparsity-inducing coherence spectrum estimation of complete and non-complete data sets

机译:计算有效的稀疏诱导相干谱估计完整和不完整的数据集

获取原文
获取原文并翻译 | 示例

摘要

The magnitude squared coherence (MSC) spectrum is an often used frequency-dependent measure for the linear dependency between two stationary processes, and the recent literature contain several contributions on how to form high-resolution data-dependent and adaptive MSC estimators, and on the efficient implementation of such estimators. In this work, we further this development with the presentation of computationally efficient implementations of the recent iterative adaptive approach (IAA) estimator, present a novel sparse learning via iterative minimization (SLIM) algorithm, discuss extensions to two-dimensional data sets, examining both the case of complete data sets and when some of the observations are missing. The algorithms further the recent development of exploiting the estimators' inherently low displacement rank of the necessary products of Toeplitz-like matrices, extending these formulations to the coherence estimation using IAA and SLIM formulations. The performance of the proposed algorithms and implementations are illustrated both with theoretical complexity measures and with numerical simulations.
机译:幅度平方相干(MSC)谱是两个固定过程之间线性相关性的常用频率相关度量,并且最近的文献对如何形成高分辨率数据相关和自适应MSC估计器以及有效地执行此类估算器。在这项工作中,我们通过最新迭代自适应方法(IAA)估计器的计算有效实现的表示,进一步发展了该技术,通过迭代最小化(SLIM)算法提出了一种新颖的稀疏学习,讨论了对二维数据集的扩展,并研究了两者完整的数据集以及缺少某些观察结果的情况。该算法进一步发展了最近的发展,即利用估计器固有的Toeplitz型矩阵的必要乘积的低位移秩,将这些公式扩展到使用IAA和SLIM公式的相干估计。理论上的复杂性度量和数值模拟都说明了所提出算法和实现的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号