首页> 外文期刊>Signal processing >Particle filtering for TDOA based acoustic source tracking: Nonconcurrent Multiple Talkers
【24h】

Particle filtering for TDOA based acoustic source tracking: Nonconcurrent Multiple Talkers

机译:基于TDOA的声源跟踪的粒子滤波:非并发多方通话者

获取原文
获取原文并翻译 | 示例

摘要

Room reverberation introduces multipath components into an audio signal and causes problems for acoustic source localization and tracking. Existing tracking methods based on the extended Kalman filter (EKF) and sequential importance resampling based particle filter (SIR-PF) usually assume that a single source is constantly active in the tracking scene. Assuming that multiple talkers may appear alternatively during a conversation, this paper develops an extended Kalman particle filtering (EKPF) approach for nonconcurrent multiple acoustic tracking (NMAT). Essentially, an EKF is introduced to obtain an optimum importance sampling, by which the particles are drawn according to the current time-delay of arrival (TDOA) measurements as well as the previous position estimates. Hence, the proposed approach can quickly adapt to the sharp position change when the source switches and the tracking lag in SIR-PF can be avoided. Moreover, the amplitude of the TDOA measurement is investigated to formulate a measurement hypothesis prior. Such a prior is fused into the tracking algorithm to enhance the tracking accuracy. Both simulations and real audio lab experiments are organized to study the tracking performance. The results demonstrate that the proposed EKPF approaches outperforms the SIR-PF and EKF in a broad range of tracking scenarios.
机译:室内混响会将多径分量引入音频信号,并导致声源定位和跟踪出现问题。基于扩展卡尔曼滤波器(EKF)和基于顺序重要性重采样的粒子滤波器(SIR-PF)的现有跟踪方法通常假定单个源在跟踪场景中始终处于活动状态。假设在对话期间可能有多个说话者交替出现,本文针对非并行多声跟踪(NMAT)开发了扩展的卡尔曼粒子滤波(EKPF)方法。本质上,引入EKF以获得最佳重要性采样,通过该采样可以根据当前的到达时间延迟(TDOA)测量值以及先前的位置估计值来绘制粒子。因此,当源切换时,所提出的方法可以快速适应急剧的位置变化,并且可以避免SIR-PF中的跟踪滞后。此外,还对TDOA测量的幅度进行了研究,以便事先制定测量假设。将这种先验融合到跟踪算法中以提高跟踪精度。模拟和真实音频实验室实验均被组织来研究跟踪性能。结果表明,在广泛的跟踪场景中,拟议的EKPF方法优于SIR-PF和EKF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号