首页> 外文期刊>Signal processing >Robust incremental adaptive strategies for distributed networks to handle outliers in both input and desired data
【24h】

Robust incremental adaptive strategies for distributed networks to handle outliers in both input and desired data

机译:分布式网络的鲁棒增量自适应策略,可以处理输入数据和所需数据中的异常值

获取原文
获取原文并翻译 | 示例

摘要

Conventional distributed strategies based on least error squares cost function are not robust against outliers present in the desired and input data. This manuscript employs the generalized-rank (GR) technique as a cost function instead of least error squares cost function to control the effects of outliers present both in input and desired data. A novel indicator function and median based approach are proposed to decrease the computational complexity requirement at the sensor nodes. Further to increase the convergence speed a sign regressor GR norm is also proposed and used. Simulation based experiments show that the performance obtained using proposed methods is robust against outliers in the desired and input data.
机译:基于最小误差平方成本函数的常规分布式策略对于期望数据和输入数据中存在的离群值并不鲁棒。该手稿采用广义秩(GR)技术作为成本函数,而不是最小误差平方成本函数,以控制输入数据和所需数据中存在的异常值的影响。提出了一种新颖的指标函数和基于中值的方法来减少传感器节点的计算复杂度要求。为了提高收敛速度,还提出并使用了符号回归GR范数。基于仿真的实验表明,使用提出的方法获得的性能对于所需数据和输入数据中的异常值具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号