首页> 外文期刊>Signal processing >A constrained optimization approach to combining multiple non-local means denoising estimates
【24h】

A constrained optimization approach to combining multiple non-local means denoising estimates

机译:一种组合多个非局部均值去噪估计的约束优化方法

获取原文
获取原文并翻译 | 示例

摘要

There is an ongoing need to develop image denoising approaches that suppress noise while maintaining edge information. The non-local means (NLM) algorithm, a widely used patch-based method, is a highly effective edge-preserving technique but is sensitive to parameter tuning. We use a variational approach to combine multiple NLM estimates, seeking a solution that balances positivity constraints and gradient penalties against Stein's Unbiased Risk Estimate (SURE). This method greatly reduces parameter sensitivity and improves denoising performance vs. other NLM variants.
机译:持续需要开发在保持边缘信息的同时抑制噪声的图像去噪方法。非本地均值(NLM)算法是一种广泛使用的基于补丁的方法,是一种高效的边缘保留技术,但对参数调整敏感。我们使用一种变分方法来组合多个NLM估计,以寻求一种解决方案,该解决方案要在阳性约束和梯度惩罚与Stein的无偏风险估计(SURE)之间取得平衡。与其他NLM变体相比,此方法大大降低了参数灵敏度并提高了降噪性能。

著录项

  • 来源
    《Signal processing》 |2014年第10期|60-68|共9页
  • 作者单位

    Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, United States;

    Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, United States;

    Raytheon BBN, Cambridge, MA 02138, United States;

    Raytheon BBN, Cambridge, MA 02138, United States,Information Sciences Institute at USC;

    Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Denoising; Non-local means; Optimization; ADMM; Total Variation;

    机译:去噪;非本地手段;优化;ADMM;总变化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号