首页> 外文期刊>Signal processing >A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test
【24h】

A new non-local maximum likelihood estimation method for Rician noise reduction in magnetic resonance images using the Kolmogorov-Smirnov test

机译:使用Kolmogorov-Smirnov检验的磁共振图像中Rician降噪的新的非局部最大似然估计方法

获取原文
获取原文并翻译 | 示例

摘要

Denoising algorithms play an important role in the enhancement of magnetic resonance (MR) images. Effective denoising is vital for proper analysis and accurate quantitative measurements from MR images. Maximum Likelihood (ML) estimation methods were proved to be very effective in denoising MR images. Among the ML based methods, the recently proposed non-local maximum likelihood (NLML) approach gained much attention. In the NLML method, the samples for the ML estimation of the true underlying intensity are selected in a non-local way based on the intensity similarity of the pixel neighborhoods. This similarity is generally measured using the Euclidean distance. A drawback of this approach is the usage of a fixed sample size for the ML estimation resulting in over- or under-smoothing. In this work, we propose an NLML estimation method for denoising MR images in which the samples are selected in an adaptive and statistically supported way using the Kolmogorov-Smirnov (KS) similarity test. The method has been tested both on simulated and real data, showing its effectiveness.
机译:去噪算法在增强磁共振(MR)图像中起着重要作用。有效的降噪对于正确分析和从MR图像进行准确的定量测量至关重要。事实证明,最大似然(ML)估计方法对MR图像降噪非常有效。在基于ML的方法中,最近提出的非局部最大似然(NLML)方法引起了很多关注。在NLML方法中,基于像素邻域的强度相似度以非局部方式选择用于真实基础强度的ML估计的样本。通常使用欧几里得距离来衡量这种相似性。这种方法的缺点是使用固定样本大小进行ML估计会导致平滑度过高或不足。在这项工作中,我们提出了一种用于MR图像去噪的NLML估计方法,其中使用Kolmogorov-Smirnov(KS)相似度测试以自适应且受统计支持的方式选择样本。该方法已经在模拟和真实数据上进行了测试,显示了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号