首页> 外文期刊>Signal processing >Structured sparsity-driven autofocus algorithm for high-resolution radar imagery
【24h】

Structured sparsity-driven autofocus algorithm for high-resolution radar imagery

机译:高分辨率雷达图像的结构化稀疏驱动自动聚焦算法

获取原文
获取原文并翻译 | 示例

摘要

Recent development of compressive sensing has greatly benefited radar imaging problems. In this paper, we investigate the problem of obtaining enhanced targets such as ships and airplanes, where targets often exhibit structured sparsity. A novel structured sparsity-driven autofocus algorithm is proposed based on sparse Bayesian framework. The structured sparse prior is imposed on the target scene in a statistical manner. Based on a statistical framework, the proposed algorithm can simultaneously cope with structured sparse recovery and phase error correction problem. The focused high-resolution radar image can be obtained by iteratively estimating scattering coefficients and phase. Due to the structured sparse constraint the proposed algorithm can desirably preserve the target region and alleviate over-shrinkage problem, compared to previous sparsity-driven auto-focus approaches. Moreover, to accelerate convergence rate of the algorithm, we propose to adaptively eliminate noise-only range cells in estimating phase errors. The selection is conveniently conducted based on the parameters controlling sparsity degree of the signal in the proposed hierarchical model. The simulated and real data experimental results demonstrate that the proposed algorithm can obtain more concentrated images with much smaller number of iterations, particularly in low SNR and highly under-sampling scenarios.
机译:压缩感测的最新发展极大地受益于雷达成像问题。在本文中,我们研究了获得增强目标(例如船舶和飞机)的问题,这些目标通常表现出结构化的稀疏性。提出了一种基于稀疏贝叶斯框架的结构化稀疏驱动自动对焦算法。结构化的稀疏先验以统计方式施加在目标场景上。该算法基于统计框架,可以同时解决结构化稀疏恢复和相位误差校正问题。可以通过迭代估计散射系数和相位来获得聚焦的高分辨率雷达图像。与以前的稀疏驱动自动聚焦方法相比,由于结构化的稀疏约束,所提出的算法可以理想地保留目标区域并减轻过度收缩的问题。此外,为了加快算法的收敛速度,我们提出在估计相位误差时自适应地消除纯噪声测距单元。根据所提出的分层模型中控制信号稀疏度的参数方便地进行选择。仿真和真实数据实验结果表明,所提出的算法可以以更少的迭代次数获得更集中的图像,尤其是在低SNR和高度欠采样的情况下。

著录项

  • 来源
    《Signal processing》 |2016年第8期|376-388|共13页
  • 作者单位

    School of Electrical and Electronic Engineering, Block S1, 50 Nanyang Avenue, 639798, Singapore;

    School of Marine Science and Technology, Northwestern Polytechnical University, China;

    School of Electrical and Electronic Engineering, Block S1, 50 Nanyang Avenue, 639798, Singapore;

    Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China;

    School of Electrical and Electronic Engineering, Block S1, 50 Nanyang Avenue, 639798, Singapore;

    School of Electronic Information, Wuhan University, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Radar imagery; Compressive sensing; High-resolution; Structured sparsity; Autofocus technique;

    机译:雷达影像;压缩感测;高分辨率;结构性稀疏;自动对焦技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号