首页> 外文期刊>Signal processing >Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization
【24h】

Maximum likelihood soft-output detection through Sphere Decoding combined with box optimization

机译:通过球面解码结合盒优化的最大似然软输出检测

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the improvement of known algorithms for maximum likelihood soft-output detection. These algorithms usually have large computational complexity, that can be reduced by using clipping. Taking two well-known soft-output maximum likelihood algorithms (Repeated Tree Search and Single Tree Search) as a starting point, a number of modifications (based mainly on box optimization techniques) are proposed to improve the efficiency of the search. As a result, two new algorithms are proposed for soft-output maximum likelihood detection. One of them is based on Repeated Tree Search (which can be applied with and without clipping). The other one is based on Single Tree Search, which can only be applied to the case with clipping. The proposed algorithms are compared with the Single Tree Search algorithm, and their efficiency is evaluated in standard detection problems (4×4 16-QAM and 4×4 64-QAM) with and without clipping. The results show that the efficiency of the proposed algorithms is similar to that of the Single Tree Search algorithm in the case 4×4 16-QAM; however, in the case 4 × 4 64-QAM, the new algorithms are far more efficient than the Single Tree Search algorithm.
机译:本文着重于改进用于最大似然软输出检测的已知算法。这些算法通常具有较大的计算复杂度,可以通过使用裁剪来降低计算复杂度。以两种众所周知的软输出最大似然算法(重复树搜索和单树搜索)为起点,提出了许多修改(主要基于盒优化技术)以提高搜索效率。结果,提出了两种用于软输出最大似然检测的新算法。其中之一是基于重复树搜索(可在有或没有裁剪的情况下应用)。另一个基于“单树搜索”,它只能应用于带有裁剪的情况。将所提出的算法与单树搜索算法进行比较,并在有和没有削波的标准检测问题(4×4 16-QAM和4×4 64-QAM)中评估其效率。结果表明,在4×4 16-QAM情况下,所提算法的效率与单树搜索算法相似。但是,在4×4 64-QAM的情况下,新算法比单树搜索算法有效得多。

著录项

  • 来源
    《Signal processing》 |2016年第8期|249-260|共12页
  • 作者单位

    Department of Information Systems and Computing, Universitat Politecnica de Valencia, Camino de Vera s 46022 Valencia, Spain;

    Department of Communications, Universitat Politecnica de Valencia, Camino de Vera s 46022 Valencia, Spain;

    Department of Communications, Universitat Politecnica de Valencia, Camino de Vera s 46022 Valencia, Spain;

    Department of Communications, Universitat Politecnica de Valencia, Camino de Vera s 46022 Valencia, Spain;

    Department of Information Systems and Computing, Universitat Politecnica de Valencia, Camino de Vera s 46022 Valencia, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MIMO; Soft-output maximum likelihood detection;

    机译:MIMO;软输出最大似然检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号