首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Video Error Correction Using Soft-Output and Hard-Output Maximum Likelihood Decoding Applied to an H.264 Baseline Profile
【24h】

Video Error Correction Using Soft-Output and Hard-Output Maximum Likelihood Decoding Applied to an H.264 Baseline Profile

机译:使用软输出和硬输出最大似然解码的视频错误校正应用于H.264基线配置文件

获取原文
获取原文并翻译 | 示例

摘要

Error concealment has long been identified as the last line of defense against transmission errors. Since error handling is outside the scope of video coding standards, decoders may choose to simply ignore corrupted packets or attempt to decode their content. In this paper, we present a novel joint source-channel decoding approach that can be applied to received video packets containing transmission errors. Soft-output information is combined with our novel syntax-element-level maximum likelihood decoding framework to effectively extract valid macroblocks from corrupted H.264 slices. Simulation results show that our video error correction strategy provides an average peak signal-to-noise ratio (PSNR) improvement near 2 dB compared to the error concealment approach used by the H.264 reference software, as well as an average PSNR improvement of 0.8 dB compared to state-of-the-art error concealment. The proposed method is also applicable when only hard-information is available, in which case it performs better than state-of-the-art error concealment especially in high error conditions. Finally, in our simulations, the proposed method increased the decoder computational complexity by only 5% to 20%, making it applicable for real-time applications.
机译:长期以来,错误隐藏一直是防止传输错误的最后一道防线。由于错误处理不在视频编码标准的范围内,因此解码器可以选择简单地忽略损坏的数据包或尝试对其内容进行解码。在本文中,我们提出了一种新颖的联合源信道解码方法,该方法可以应用于包含传输错误的接收视频数据包。软输出信息与我们新颖的语法元素级别最大似然解码框架相结合,可以从损坏的H.264切片中有效提取有效宏块。仿真结果表明,与H.264参考软件所使用的错误隐藏方法相比,我们的视频错误校正策略可将平均峰值信噪比(PSNR)改善近2 dB,平均PSNR改善0.8与最新的错误掩盖相比,dB。当只有硬信息可用时,所提出的方法也适用,在这种情况下,它的性能优于最新的错误隐藏,尤其是在高错误条件下。最后,在我们的仿真中,所提出的方法仅将解码器的计算复杂度提高了5%到20%,使其可用于实时应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号