首页> 外文期刊>Signal processing >DeepChart: Combining deep convolutional networks and deep belief networks in chart classification
【24h】

DeepChart: Combining deep convolutional networks and deep belief networks in chart classification

机译:DeepChart:在图表分类中结合深层卷积网络和深层信念网络

获取原文
获取原文并翻译 | 示例

摘要

Chart classification is vital to chart analysis and document understanding. In this paper, we propose a novel framework (DeepChart) to classify charts by combining convolutional networks and deep belief networks. In general, we first extract deep hidden features of charts, which are taken from the fully-connected layer of deep convolutional networks. We then utilize deep belief networks to predict the labels of the charts based on their deep hidden features. The convolutional networks are initialized using a large number of natural images and fine-tuned using the chart images to avoid overfitting. Compared with previous methods using primitive feature extraction, the deep features achieve better scalability and stability. We collect a 5-class chart data set with more than 5000 images and demonstrate that the proposed framework greatly outperforms existing methods.
机译:图表分类对于图表分析和文档理解至关重要。在本文中,我们提出了一种新颖的框架(DeepChart),通过结合卷积网络和深度信念网络对图表进行分类。通常,我们首先提取图表的深层隐藏特征,这些特征来自深层卷积网络的完全连接层。然后,我们利用深层信念网络根据其深层隐藏特征来预测图表的标签。使用大量自然图像初始化卷积网络,并使用图表图像进行微调以避免过度拟合。与以前的使用原始特征提取的方法相比,深度特征实现了更好的可伸缩性和稳定性。我们收集了包含超过5000张图像的5类图表数据集,并证明了所提出的框架大大优于现有方法。

著录项

  • 来源
    《Signal processing》 |2016年第7期|156-161|共6页
  • 作者单位

    Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, China,College of Software Technology, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

    Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, China,School of Information Science and Engineering, Yunnan University, China;

    Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, China;

    Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering, China Three Gorges University, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chart recognition; Deep convolutional network; Deep belief network;

    机译:图表识别;深度卷积网络;深度信念网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号