首页> 外文期刊>Signal processing >Single image super-resolution using regularization of non-local steering kernel regression
【24h】

Single image super-resolution using regularization of non-local steering kernel regression

机译:使用非局部转向核回归正则化的单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

One promising technique for single image super-resolution (SR) is reconstruction-based framework, where the key issue is to apply reasonable prior knowledge to well pose the solution to upsampled images. In this paper, we employ the non-local steering kernel regression (NLSKR) model to devise an effective regularization term for solving single image SR problem. The proposed regularization term is based on the complementary properties of local structural regularity and non-local self-similarity existing in natural images, aiming at preserving sharp edges and producing fine details in the resultant image. By integrating the regularization term into the standard back-projection framework, we solve a least squares minimization problem to seek the desired high-resolution (HR) image. Extensive experimental results on several public databases indicate that the proposed method produces promising results in terms of both objective and subjective quality assessments.
机译:一种用于单图像超分辨率(SR)的有前途的技术是基于重建的框架,其中的关键问题是应用合理的先验知识来很好地对上采样图像提出解决方案。在本文中,我们采用非局部转向核回归(NLSKR)模型来设计有效的正则化项来解决单图像SR问题。提出的正则化项基于自然图像中存在的局部结构正则性和非局部自相似性的互补属性,旨在保留清晰的边缘并在所得图像中产生精细的细节。通过将正则化项集成到标准反投影框架中,我们解决了最小二乘最小化问题,以寻找所需的高分辨率(HR)图像。在几个公共数据库上的大量实验结果表明,该方法在客观和主观质量评估方面均产生了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号