首页> 外文期刊>Image Processing, IEEE Transactions on >Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression
【24h】

Single Image Super-Resolution With Non-Local Means and Steering Kernel Regression

机译:具有非局部均值和转向核回归的单图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Image super-resolution (SR) reconstruction is essentially an ill-posed problem, so it is important to design an effective prior. For this purpose, we propose a novel image SR method by learning both non-local and local regularization priors from a given low-resolution image. The non-local prior takes advantage of the redundancy of similar patches in natural images, while the local prior assumes that a target pixel can be estimated by a weighted average of its neighbors. Based on the above considerations, we utilize the non-local means filter to learn a non-local prior and the steering kernel regression to learn a local prior. By assembling the two complementary regularization terms, we propose a maximum a posteriori probability framework for SR recovery. Thorough experimental results suggest that the proposed SR method can reconstruct higher quality results both quantitatively and perceptually.
机译:图像超分辨率(SR)重建本质上是一个不适的问题,因此设计有效的先验算法很重要。为此,我们通过从给定的低分辨率图像中学习非局部和局部正则化先验,提出了一种新颖的图像SR方法。非局部先验利用了自然图像中相似补丁的冗余,而局部先验则假定目标像素可以通过其邻居的加权平均值来估计。基于上述考虑,我们利用非局部均值滤波器来学习非局部先验,并利用转向核回归来学习局部先验。通过组合两个互补的正则化项,我们提出了用于SR恢复的最大后验概率框架。全面的实验结果表明,所提出的SR方法可以定量和感知地重建更高质量的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号