首页> 外文期刊>Signal processing >Variable step-size diffusion least mean fourth algorithm for distributed estimation
【24h】

Variable step-size diffusion least mean fourth algorithm for distributed estimation

机译:可变步长扩散最小均值第四算法的分布式估计

获取原文
获取原文并翻译 | 示例

摘要

The diffusion LMS (DLMS) is one of the most popular online distributed estimation algorithms, due to its simplicity and ease of implementation. However, it may suffer from large steady-state misalignment in some strong, non-Gaussian noise environments. To address this problem, this paper introduces a diffusion least mean fourth (DLMF) algorithm by using the mean-fourth error cost function in a diffusion strategy. Moreover, a variable step-size (VSS) method is developed to further reduce the steady-state misalignment of the DLMF. Simulation results show that the DLMF outperforms the DLMS with uniform or binary noise, and that the VSS-DLMF has a superior steady-state performance as compared to the DLMF.
机译:扩散LMS(DLMS)由于其简单性和易于实现性,是最受欢迎的在线分布式估计算法之一。但是,在某些强的非高斯噪声环境中,它可能会遭受较大的稳态失准。为了解决这个问题,本文通过在扩散策略中使用均值-第四误差代价函数,介绍了一种扩散最小均值算法(DLMF)。此外,开发了可变步长(VSS)方法以进一步减少DLMF的稳态失准。仿真结果表明,DLMF在均匀或二进制噪声方面优于DLMS,并且VSS-DLMF的稳态性能优于DLMF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号