首页> 外文期刊>Signal processing >Relevance and irrelevance graph based marginal Fisher analysis for image search reranking
【24h】

Relevance and irrelevance graph based marginal Fisher analysis for image search reranking

机译:基于相关度和不相关度图的边缘Fisher分析用于图像搜索排名

获取原文
获取原文并翻译 | 示例

摘要

Learning-to-rank techniques have shown promising results in the domain of image ranking recently, where dimensionality reduction is a critical step to overcome the "curse of dimensionality". However, conventional dimensionality reduction approaches cannot guarantee the satisfying performance because the important ranking information is ignored. This paper presents a novel "Ranking Dimensionality Reduction" scheme specifically designed for learning-to-rank based image ranking, which aims at not only discovering the intrinsic structure of data but also keeping the ordinal information. Within this scheme, a new dimensionality reduction algorithm called Relevance Marginal Fisher Analysis (RMFA) is proposed. RMFA models the proposed pairwise constraints of relevance-link and irrelevance-link into the relevance graph and the irrelevance graph, and applies the graphs to build the objective function with the idea of Marginal Fisher Analysis (MFA). Further, a semi-supervised RMFA algorithm called Semi-RMFA is developed to offer a more general solution for the real-world application. Extensive experiments are carried on two popular, real-world image search reranking datasets. The promising results demonstrate the robustness and effectiveness of the proposed scheme and methods.
机译:等级学习技术最近在图像排名领域已显示出令人鼓舞的结果,其中降维是克服“维数诅咒”的关键步骤。但是,传统的降维方法不能保证令人满意的性能,因为重要的排名信息被忽略了。本文提出了一种新颖的“降阶降维”方案,该方案专为基于学习排名的图像排名而设计,旨在不仅发现数据的内在结构,而且还保留顺序信息。在该方案中,提出了一种新的降维算法,称为相关边际费舍尔分析(RMFA)。 RMFA将拟议的关联链接和不相关链接的成对约束建模为关联图和不相关图,并使用边际费舍尔分析(MFA)的思想将这些图应用于目标函数。此外,开发了一种称为Semi-RMFA的半监督RMFA算法,以为实际应用提供更通用的解决方案。在两个流行的,真实世界的图像搜索重新排序数据集上进行了广泛的实验。有希望的结果证明了所提出的方案和方法的鲁棒性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号