首页> 外文期刊>Signal processing >Stability analysis of nonlinear digital systems under hardware overflow constraint for dealing with finite word-length effects of digital technologies
【24h】

Stability analysis of nonlinear digital systems under hardware overflow constraint for dealing with finite word-length effects of digital technologies

机译:非线性数字系统在硬件溢出约束下处理数字技术有限字长效应的稳定性分析

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to examine stability and originate stability criteria for nonlinear digital systems under the influence of saturation overflow, both in the absence and presence of external interference. The developed approaches can be employed to analyse overflow oscillation-free implementation of a nonlinear digital system under saturation overflow nonlinearity, caused by the finite word-length limitation of a digital hardware, such as computer processor or micro-controller. Asymptotic stability is examined in the absence of disturbance, whereas in the presence of external interference, the form of stability ensured is uniformly ultimately bounded stability, in which the states trajectories converge to an ellipsoidal region around the origin. In most of the studies reported so far, the authors have performed the overflow stability analysis of linear systems but very little (if any) work has been reported on the overflow oscillation elimination (for nonlinear systems). In the present work, sector conditions derived from saturation constraint along with Lipschitz condition are used with a suitable Lyapunov function for the stability analysis of nonlinear digital systems under overflow. The validity and efficacy of these criteria are tested by using examples from real nonlinear physical systems, including Moon chaotic system's observer and recurrent neural network.
机译:本文的目的是在不存在和存在外部干扰的情况下,研究饱和饱和溢出影响下的非线性数字系统的稳定性并提出稳定性标准。所开发的方法可用于分析饱和数字非线性引起的非线性数字系统的无振荡无振荡实现,该非线性是由数字硬件(例如计算机处理器或微控制器)的有限字长限制引起的。在没有干扰的情况下检查渐近稳定性,而在有外部干扰的情况下,要确保的稳定形式是最终均匀稳定的稳定状态,其中状态轨迹收敛到原点周围的椭圆区域。迄今为止,在大多数研究中,作者都​​对线性系统进行了溢流稳定性分析,但是(对于非线性系统)关于消除溢流振荡的工作很少(如果有的话)。在当前工作中,将从饱和约束导出的扇区条件与Lipschitz条件一起使用,并使用适当的Lyapunov函数对溢出下的非线性数字系统进行稳定性分析。这些标准的有效性和有效性通过使用真实的非线性物理系统(包括Moon混沌系统的观测器和递归神经网络)中的示例进行测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号