首页> 外文期刊>Signal processing >Multi-stream deep networks for human action classification with sequential tensor decomposition
【24h】

Multi-stream deep networks for human action classification with sequential tensor decomposition

机译:具有顺序张量分解的多流深度网络用于人类行为分类

获取原文
获取原文并翻译 | 示例

摘要

Effective spatial-temporal representation of motion information is crucial to human action classification. In spite of the attempt of most existing methods capturing spatial-temporal structure and learning motion representations with deep neural networks, such representations are failing to model action at their full temporal extent. To address this problem, this paper proposes a global motion representation by using sequential low-rank tensor decomposition. Specifically, we model an action sequence as a third-order tensor with spatiotemporal structure. Then, by using low-rank tensor decomposition, partial motion of objects in global context were preserved which will be feeding into deep architecture to automatically learning global-term motion features. To simultaneously exploit static spatial features, short-term motion and global-term motion in the video, we describe a multi-stream framework with recurrent convolu-tional architectures which is end-to-end trainable. Gated Recurrent Unit (GRU) is used as our recurrent unit which have fewer parameters than Long Short-Term Memory (LSTM). Extensive experiments were conducted on two challenging dataset: HMDB51 and UCF101. Experimental results show that our method achieves state-of-the-art performance on the HMDB51 dataset, and is comparable to the state-of-the-art methods on the UCF101 dataset.
机译:运动信息的有效时空表示对于人类行为分类至关重要。尽管大多数现有方法都尝试捕获时空结构并使用深度神经网络学习运动表示,但此类表示仍无法在其整个时间范围内对动作建模。为了解决这个问题,本文提出了一种使用顺序低秩张量分解的全局运动表示方法。具体来说,我们将动作序列建模为具有时空结构的三阶张量。然后,通过使用低秩张量分解,保留了全局上下文中对象的部分运动,这些部分运动将被馈入深度体系结构以自动学习全局项运动特征。为了同时利用视频中的静态空间特征,短期运动和全局运动,我们描述了一种具有循环卷积架构的多流框架,该框架是端到端可训练的。门控循环单元(GRU)用作我们的循环单元,其参数比长短期记忆(LSTM)少。在两个具有挑战性的数据集上进行了广泛的实验:HMDB51和UCF101。实验结果表明,我们的方法在HMDB51数据集上具有最先进的性能,可与UCF101数据集上的最新方法相媲美。

著录项

  • 来源
    《Signal processing》 |2017年第11期|198-206|共9页
  • 作者

    Huiwen Guo; Xinyu Wu; Wei Feng;

  • 作者单位

    Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, PR China,Key Laboratory of Human-Machine-Intelligence Synergic Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, PR China,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, PR China;

    Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, PR China,Key Laboratory of Human-Machine-Intelligence Synergic Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, PR China,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, PR China;

    Guangdong Provincial Key Lab of Robotics and Intelligent Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, PR China,Key Laboratory of Human-Machine-Intelligence Synergic Systems, Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Action classification; Global motion; Tensor decomposition; Gated Recurrent Unit; Recurrent Neural network;

    机译:动作分类;全球运动;张量分解门控循环单元;递归神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号