首页> 外文期刊>Signal processing >Off-grid DOA estimation under nonuniform noise via variational sparse Bayesian learning
【24h】

Off-grid DOA estimation under nonuniform noise via variational sparse Bayesian learning

机译:基于变分稀疏贝叶斯学习的非均匀噪声下的离网DOA估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of direction-of-arrival (DOA) estimation in the presence of nonuniform noise is investigated, where the inherent off-grid effects in traditional sparsity-inducing algorithms are also considered. By formulating a sparse signal recovery problem for weighted partial virtual array (PVA) response, we develop a sparse Bayesian learning based method by exploiting joint sparsity between the power distribution of incident signals and the off-grid difference. In our proposed algorithm, a weighted partial covariance vector is obtained through the deliberate projection and decorrelation operations, which facilitates a sparse representation free from the nonuniform noise variances. Meanwhile, a variational Bayesian inference is implemented upon a hierarchical Bayesian learning model with an almost Jeffrey's prior adopted, which strongly induces the sparsity and involves adaptively tuning sparseness-controlling parameters. Moreover, the proposed method works without the knowledge of the number of sources. Simulation results demonstrate it provides superiority in estimation precision and robustness against nonuniform noise.
机译:在本文中,研究了在存在非均匀噪声的情况下到达方向(DOA)估计的问题,其中还考虑了传统的稀疏诱导算法中固有的离网效应。通过为加权部分虚拟阵列(PVA)响应制定稀疏信号恢复问题,我们通过利用入射信号的功率分布与离网差异之间的联合稀疏性,开发了一种基于稀疏贝叶斯学习的方法。在我们提出的算法中,加权的部分协方差向量是通过有意的投影和去相关运算获得的,这有助于避免出现非均匀噪声方差的稀疏表示。同时,在近似于杰弗里(Jeffrey)先验的分层贝叶斯学习模型上实现了变分贝叶斯推理,这强烈地导致了稀疏性并涉及自适应地调整稀疏控制参数。而且,所提出的方法在不知道源数目的情况下起作用。仿真结果表明,它在估计精度和针对非均匀噪声的鲁棒性方面具有优势。

著录项

  • 来源
    《Signal processing》 |2017年第8期|69-79|共11页
  • 作者单位

    Collaborative Innovation Center of Information Sensing and Understanding, State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, 710071, China;

    Collaborative Innovation Center of Information Sensing and Understanding, State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, 710071, China;

    Collaborative Innovation Center of Information Sensing and Understanding, State Key Laboratory of Integrated Services Networks, School of Electronic Engineering, Xidian University, Xi'an, Shaanxi, 710071, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Direction-of-arrival estimation; Nonuniform noise; Off-grid; Partial virtual array; Variational Bayesian inference;

    机译:到达方向估计;噪声不均匀;离网部分虚拟阵列;变分贝叶斯推理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号