首页> 外文期刊>Signal processing >Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution
【24h】

Geometric correction based color image watermarking using fuzzy least squares support vector machine and Bessel K form distribution

机译:模糊最小二乘支持向量机和Bessel K形式分布的基于几何校正的彩色图像水印

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a robust color image watermarking algorithm based on fuzzy least squares support vector machine (FLS-SVM) and Bessel K form (BKF) distribution, which is a recently developed geometric correction algorithm. We firstly compute the quaternion discrete Fourier transform (QDFT) of the maximum central region of the original color image. Then the watermark is embedded into the magnitudes of low-frequency information of QDFT. In watermark decoding process, the synchronous correction based on FLS-SVM model is used. When training the FLS-SVM model, we firstly perform the quaternion wavelet transform (QWT) of the grayscale images that correspond to the color training images, and then use BKF distribution to fit the empirical histogram of coefficients of the QWT, and finally use the shape parameters and scale parameters of BKF distribution to construct image feature vector. Experimental results show that the proposed algorithm is not only invisible, but also has outstanding robustness against common image processing attacks and geometric attacks.
机译:本文提出了一种基于模糊最小二乘支持向量机(FLS-SVM)和Bessel K形式(BKF)分布的鲁棒彩色图像水印算法,它是最近开发的一种几何校正算法。我们首先计算原始彩色图像最大中心区域的四元数离散傅里叶变换(QDFT)。然后将水印嵌入到QDFT低频信息的幅度中。在水印解码过程中,采用了基于FLS-SVM模型的同步校正。在训练FLS-SVM模型时,我们首先对与色彩训练图像相对应的灰度图像执行四元小波变换(QWT),然后使用BKF分布拟合QWT系数的经验直方图,最后使用BKF分布的形状参数和尺度参数来构造图像特征向量。实验结果表明,该算法不仅不可见,而且对常见的图像处理攻击和几何攻击具有出色的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号