首页> 外文期刊>Signal processing >Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods
【24h】

Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods

机译:具有子空间和基于压缩感测的DOA估计方法的非圆形信号的稀疏阵列扩展

获取原文
获取原文并翻译 | 示例

摘要

HighlightsVirtual array generation for typical sparse arrays is studied for a mixture of circular and non-circular impinging signals.Based on the extended covariance matrix, two co-arrays are generated: the traditional difference co-array and the newly derived sum co-array.Two classes of DOA estimation algorithms are developed: one subspace based and one sparse representation or compressive sensing (CS) based.The CS-based solution has a better performance than the subspace-based one, at the cost of a significantly increased computational complexity.AbstractThe virtual array generation process based on typical sparse arrays is studied for a mixture of circular and non-circular impinging signals. It consists of two sub-arrays: one is the traditional difference co-array and the other one is the new sum co-array. The number of consecutive virtual array sensors is analysed for the nested array case, but it is difficult to give a closed-form result for a general sparse array. Based on the extended covariance matrix of the physical array, two classes of direction of arrival (DOA) estimation algorithms are then developed, with one based on the subspace method and one based on sparse representation or the compressive sensing (CS) concept. Both the consecutive and non-consecutive parts of the virtual array can be exploited by the CS-based method, while only the consecutive part can be exploited by the subspace-based one. As a result, the CS-based solution can have a better performance than the subspace-based one, though at the cost of significantly increased computational complexity. The two classes of algorithms can also deal with the special case when all the signals are noncircular. Simulation results are provided to verify the performance of the proposed algorithms.
机译: 突出显示 研究了典型稀疏阵列的虚拟阵列生成方法,该方法将圆形和非圆形撞击信号混合在一起。 基于扩展协方差矩阵,两个协方差生成数组:传统的差分协数组和新派生的和协数组。 开发了两类DOA估计算法:一种基于子空间,一种基于晶石这些表示或压缩感知(CS)。 基于CS的解决方案比基于子空间的解决方案具有更好的性能,但代价是计算复杂性大大提高。 摘要 虚拟阵列生成研究了基于典型稀疏阵列的圆形和非圆形撞击信号混合过程。它由两个子数组组成:一个是传统的差分协数组,另一个是新的和协数组。对于嵌套数组的情况,分析了连续虚拟数组传感器的数量,但是很难为普通的稀疏数组给出封闭形式的结果。然后,基于物理阵列的扩展协方差矩阵,开发了两类到达方向(DOA)估计算法,一种基于子空间方法,另一种基于稀疏表示或压缩感知(CS)概念。基于CS的方法可以利用虚拟阵列的连续部分和非连续部分,而基于子空间的只能利用连续部分。结果,基于CS的解决方案可以具有比基于子空间的解决方案更好的性能,尽管以显着增加计算复杂性为代价。当所有信号均为非圆形时,这两类算法也可以处理特殊情况。仿真结果验证了所提算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号