首页> 外文期刊>Signal processing >Two sparse-based methods for off-grid direction-of-arrival estimation
【24h】

Two sparse-based methods for off-grid direction-of-arrival estimation

机译:两种基于稀疏的离网到达方向估计方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, many sparse-based methods have been proposed for direction-of-arrival (DOA) estimation. However, these methods often suffer from the grid mismatch problem caused by the discretization of the potential angle space. Most of them employ the iterative grid refinement (IGR) method to alleviate this problem. Nevertheless, IGR requires a high computational load and may not comply with the restricted isometry property (RIP) condition in the compressed sensing (CS) theory. This paper aims to overcome the grid mismatch limitation inherent in conventional sparse-based techniques. In particular, we first introduce an off-grid model by incorporating the bias parameter into the signal model, then propose a two-step iterative method named off-grid ℓ_1 Cholesky covariance decomposition (OGL1CCD) to solve the DOA estimation problem. Our method can be accelerated to save computations and the proposed algorithm framework can be extended for any other sparse-based method to improve their estimation accuracy. We then propose another off-grid method named off-grid ℓ_1 covariance matrix reconstruction approach (OGL1CMRA) based on the covariance matrix model. Compared to OGL1CCD, OGL1CMRA is more computationally efficient and accurate, but requires sufficient snapshots and uncorrelated sources. Our proposed methods are superior to many other methods in estimation performance, which is verified by extensive numerical simulations.
机译:近来,已经提出了许多基于稀疏的到达方向(DOA)估计方法。然而,这些方法经常遭受由潜在角度空间的离散化引起的网格失配问题。他们中的大多数采用迭代网格细化(IGR)方法来缓解此问题。但是,IGR需要很高的计算负荷,并且可能不符合压缩感知(CS)理论中的受限等距特性(RIP)条件。本文旨在克服传统的基于稀疏的技术固有的网格失配限制。特别是,我们首先通过将偏差参数合并到信号模型中来引入离网模型,然后提出一种称为离网ℓ_1乔尔斯基协方差分解(OGL1CCD)的两步迭代方法来解决DOA估计问题。我们的方法可以加速以节省计算量,并且所提出的算法框架可以扩展为任何其他基于稀疏的方法,以提高其估计精度。然后,我们基于协方差矩阵模型,提出了另一种离网方法,称为离网ℓ_1协方差矩阵重建方法(OGL1CMRA)。与OGL1CCD相比,OGL1CMRA的计算效率和准确性更高,但需要足够的快照和不相关的来源。我们提出的方法在估计性能方面优于许多其他方法,这已通过广泛的数值模拟得到了验证。

著录项

  • 来源
    《Signal processing》 |2018年第1期|87-95|共9页
  • 作者单位

    The Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China;

    The Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China,Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada;

    The Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China;

    The Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Nanjing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Covariance matrix; Direction-of-arrival (DOA) estimation; Off-grid model; Sparse-based method;

    机译:协方差矩阵到达方向(DOA)估计;离网模型;基于稀疏的方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号