首页> 外文期刊>Signal processing >Root sparse asymptotic minimum variance for off-grid direction-of-arrival estimation
【24h】

Root sparse asymptotic minimum variance for off-grid direction-of-arrival estimation

机译:离网到达方向估计的根稀疏渐近最小方差

获取原文
获取原文并翻译 | 示例

摘要

Sparsity-based direction-of-arrival (DOA) estimation algorithms have received much attention due to their good performances. However, most of these algorithms suffer from the so-called basis mismatch if the true DOAs deviate from the discrete grid points. This paper provides an off-grid DOA estimation method which iteratively updates the grid until some of the grid points coincide with the DOAs. Based on the first-order Taylor series expansion of the true steering vectors, the deviations of these grid points from the true DOAs, i.e., the so-called grid errors, are linked to the steering vectors defined on the grid by a linear relation approximately. Using this linear relation, the grid errors can be estimated under the asymptotic minimum variance criterion. The grid is modified by adding the grid errors to the grid points, leading to them closer to the true DOAs, and consequently mitigating the basis mismatch. It is shown by simulations that the proposed method achieves high performance both in terms of estimation accuracy and computational efficiency. (C) 2019 Elsevier B.V. All rights reserved.
机译:基于稀疏性的到达方向(DOA)估计算法由于其良好的性能而备受关注。但是,如果真正的DOA偏离离散网格点,则这些算法中的大多数都会遭受所谓的基本失配。本文提供了一种离网DOA估计方法,该方法可迭代更新栅格,直到某些栅格点与DOA一致为止。基于真实操纵向量的一阶泰勒级数展开,这些网格点与真实DOA的偏差(即所谓的网格误差)通过近似线性关系与在网格上定义的操纵向量相关联。使用该线性关系,可以根据渐近最小方差准则来估计网格误差。通过将网格误差添加到网格点,使其更接近真实DOA,从而减轻基本不匹配,可以修改网格。仿真结果表明,该方法在估计精度和计算效率上均具有较高的性能。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号