首页> 外文期刊>Signal processing >General fuzzy C-means clustering algorithm using Minkowski metric
【24h】

General fuzzy C-means clustering algorithm using Minkowski metric

机译:使用Minkowski公制的一般模糊C-Means聚类算法

获取原文
获取原文并翻译 | 示例

摘要

As one of the most commonly used clustering methods, fuzzy clustering technique such as the Fuzzy C-means (FCM) has undergone a rapid development. In this paper, a general FCM clustering algorithm based on contraction mapping (cGFCM) is proposed for more general cases of using Minkowski metric (L_p-norm distance) as the similarity measure, and the analytical method for calculating the parameters of the proposed algorithm is given. The core of the proposed cGFCM algorithm lies on constructing a contraction mapping to update the prototypes when an arbitrary Minkowski metric is used to measure the closeness of data points. Subsequently, mainly guided by the Banach contraction mapping principle, the algorithm and implementation approaches are discussed in detail, and the correctness and feasibility of the proposed method are proved. Moreover, the convergence of the proposed algorithm is also discussed. Experimental studies carried out on both synthetic data sets and real-world data sets show that the proposed cGFCM algorithm extends FCM to more general cases without extra time and space costs. Compared with another generalized FCM clustering strategy and other five state-of-the-art clustering methods, the proposed algorithm can not only reach better performance in both clustering accuracy and stability, but reduce the running time several-fold.
机译:作为最常用的聚类方法之一,模糊聚类技术,例如模糊C-Means(FCM)经历了快速发展。在本文中,提出了一种基于收缩映射(CGFCM)的通用FCM聚类算法,用于使用Minkowski公制(L_P-NOM-距离)作为相似度测量的更多通用情况,以及计算所提出的算法参数的分析方法是给予。所提出的CGFCM算法的核心在于构建收缩映射,以便在使用任意Minkowski度量来测量数据点的亲密度时更新原型。随后,主要由Banach收缩映射原理引导,详细讨论了算法和实现方法,并证明了该方法的正确性和可行性。此外,还讨论了所提出的算法的收敛。在合成数据集和现实世界数据集上进行的实验研究表明,所提出的CGFCM算法在没有额外的时间和空间成本的情况下将FCM扩展到更普遍的情况。与另一个广义的FCM聚类策略和其他五种最先进的聚类方法相比,所提出的算法不仅可以达到聚类精度和稳定性的更好的性能,而且可以减少几倍的运行时间。

著录项

  • 来源
    《Signal processing》 |2021年第11期|108161.1-108161.15|共15页
  • 作者单位

    School of Automation Beijing Institute of Technology Beijing 100081 China State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing 100081 China;

    School of Automation Beijing Institute of Technology Beijing 100081 China State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing 100081 China;

    School of Automation Beijing Institute of Technology Beijing 100081 China State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing 100081 China;

    School of Automation Beijing Institute of Technology Beijing 100081 China State Key Laboratory of Intelligent Control and Decision of Complex Systems Beijing 100081 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fuzzy clustering; Fuzzy C-means (FCM); Minkowski metric; Contraction mapping;

    机译:模糊聚类;模糊C型方式(FCM);Minkowski指标;收缩映射;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号