首页> 外文期刊>Signal processing >Single image super-resolution using feature adaptive learning and global structure sparsity
【24h】

Single image super-resolution using feature adaptive learning and global structure sparsity

机译:单幅图像超分辨率使用特征自适应学习和全球结构稀疏性

获取原文
获取原文并翻译 | 示例

摘要

Due to the important application value of image super-resolution, many image super-resolution algorithms have been proposed in recent years. However, many single-image super-resolution algorithms usually have their own limitations and cannot achieve ideal results. To this end, this paper proposes a new single-image super-resolution method that uses non-local self-similarity, cross-resolution similarity, and global structure sparsity without relying on external instances. First, we obtain the initial high-resolution image through feature-constrained polynomial interpolation. Then, we use a database built by the input image to perform cross-resolution learning to predict the missing high-frequency information in the image. Finally, we use the residual filtering proposed in this paper to remove the noise introduced during interpolation and cross-resolution learning. Our method can be combined with other image super-resolution algorithms. Through extensive comparison experiments to verify, our method achieves higher numerical accuracy and pleasing visual effects.
机译:由于图像超分辨率的重要应用值,近年来提出了许多图像超分辨率算法。然而,许多单图像超分辨率算法通常具有自己的限制,无法实现理想的结果。为此,本文提出了一种新的单图像超分辨率方法,其使用非本地自我相似性,交叉分辨率相似性和全局结构稀疏性而不依赖于外部实例。首先,我们通过特征约束多项式插值获得初始高分辨率图像。然后,我们使用由输入图像构建的数据库来执行跨分辨率学习以预测图像中的缺失的高频信息。最后,我们使用本文提出的残余滤波来消除在插值和跨分辨率学习期间引入的噪声。我们的方法可以与其他图像超分辨率算法组合。通过广泛的比较实验来验证,我们的方法可以实现更高的数值准确性和令人愉悦的视觉效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号