首页> 外文期刊>Signal processing >Bidirectional recurrent gamma belief network for HRRP target recognition
【24h】

Bidirectional recurrent gamma belief network for HRRP target recognition

机译:用于HRRP目标识别的双向反复伽马信仰网络

获取原文
获取原文并翻译 | 示例

摘要

To characterize the bidirectional temporal dependence across the range cell of high resolution range profile (HRRP), we propose a bidirectional deep Poisson gamma dynamical system (bi-DPGDS) to extract features for target recognition. The proposed bi-DPGDS is a bidirectional dynamical deep probabilistic generative model, which builds temporal deep structure with a hierarchy of gamma distributions. For scalable training and fast out-of-sample prediction, we generalize bi-DPGDS to bidirectional recurrent gamma belief network (bi-rGBN) by incorporating a bidirectional recurrent variational inference network, which incorporates the temporal correlations from both directions into latent representation, and introduce a hybrid Bayesian inference scheme combining stochastic gradient Markov chain Monte Carlo (SG-MCMC) and amoritized variational inference. Moreover, we further propose an attention bi-rGBN (attn-bi-rGBN) for supervised learning. Experimental results on measured HRRP data demonstrate the effectiveness and efficiency of our model in classification and generalization, and its robustness to HRRP shift and data size.
机译:为了表征跨高分辨率范围分布(HRRP)的范围单元的双向时间依赖性,我们提出了一种双向深泊陀伽马动态系统(BI-DPGDS)以提取目标识别的特征。所提出的Bi-DPGDS是双向动态深层概率生成模型,其构建具有伽马分布层次的时间深层结构。对于可扩展的训练和快速采样预测,通过结合双向反复变分或者通过掺入双向转换变分网络来概括双向转发伽马信仰网络(BI-RGBN),这将时间相关从两个方向融入潜伏表示,介绍一个混合贝叶斯推理方案,组合随机梯度马尔可夫链蒙特卡罗(SG-MCMC)和琥珀化变分推理。此外,我们进一步提出了监督学习的PIG-RGBN(ATTN-BI-RGBN)。测量HRRP数据的实验结果证明了我们在分类和泛化中模型的有效性和效率,以及对HRRP班次和数据大小的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号