首页> 外文期刊>Signal processing >Region-factorized recurrent attentional network with deep clustering for radar HRRP target recognition
【24h】

Region-factorized recurrent attentional network with deep clustering for radar HRRP target recognition

机译:具有深入聚类的区域分解经常性注意力雷达HRRP目标识别

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction plays an essential role in radar automatic target recognition (RATR) with high-resolution range profiles (HRRPs). Traditional feature extraction algorithms usually ignore that different regions in HRRP contain the information with different importance, resulting in their inadequacy in characterizing HRRP data. In this work, we propose a region factorized recurrent attentional network (RFRAN) for HRRP-RATR by making use of the temporal dependence through recurrent neural network (RNN) and automatically finding the informative regions by a deep clustering mechanism in HRRP samples, which reflects the distribution of scatterers in target along range dimension. Specifically, we represent the temporal RNN hidden state using a region factorized encoder whose parameters are conditioned on the HRRP region cluster centers. Moreover an attention mechanism is used to weight up the different recognition contribution of each time step's hidden state. The aim of all the above modules is to achieve a more informative and discriminative feature. Crucially, the loss function of RFRAN is differentiable, so all components can be jointly trained with a gradient-based optimization. Compared with traditional methods, besides the competitive recognition performance, RFRAN has a promising interpretability thanks to the sequential region-specific hidden states.
机译:特征提取在雷达自动目标识别(RATR)中起重要作用,具有高分辨率范围曲线(HRRP)。传统的特征提取算法通常忽略HRRP中的不同区域包含具有不同重要性的信息,从而在表征HRRP数据时不足。在这项工作中,我们通过经常性神经网络(RNN)使用时间依赖性并通过HRRP样本中的深层聚类机制自动找到信息区域来提出HRRP-RATR的一个地区分解复发性注意力网络(RFRAN)。沿范围尺寸的目标散射体的分布。具体地,我们使用该区域分解编码器表示时间RNN隐藏状态,其参数在HRRP区域集群中心上调节。此外,注意机制用于加强每个时间步骤隐藏状态的不同识别贡献。所有上述模块的目的是实现更具信息丰富和歧视的特征。至关重要的是,RFRAN的损耗功能可分辨,因此所有组件都可以通过基于梯度的优化共同培训。与传统方法相比,除了竞争的识别性能之外,RFRAN还具有有希望的可解释性,得益于序列区域特定的隐藏状态。

著录项

  • 来源
    《Signal processing》 |2021年第6期|108010.1-108010.10|共10页
  • 作者单位

    School of Electronics and Communication Engineering Sun Yat-sen University Guangzhou 510006 China;

    National Laboratory of Radar Signal Processing Xidian University Xi'an 710071 China;

    National Laboratory of Radar Signal Processing Xidian University Xi'an 710071 China;

    School of Electronics and Communication Engineering Sun Yat-sen University Guangzhou 510006 China;

    National Laboratory of Radar Signal Processing Xidian University Xi'an 710071 China;

    National Laboratory of Radar Signal Processing Xidian University Xi'an 710071 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Region factorization; Clustering strategy; Attention mechanism; HRRP-RATR; RNN;

    机译:区域分解;聚类策略;注意机制;HRRP-RATR;rnn.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号