首页> 外文期刊>Signal processing >A fast algorithm for group square-root Lasso based group-sparse regression
【24h】

A fast algorithm for group square-root Lasso based group-sparse regression

机译:基于Squous-Root Lasso组稀疏回归的快速算法

获取原文
获取原文并翻译 | 示例

摘要

Group square-root Lasso (GSRL) is a promising tool for group-sparse regression since the hyperparameter is independent of noise level. Recent works also reveal its connections to some statistically sound and hyperparameter-free methods, e.g., group-sparse iterative covariance-based estimation (GSPICE). However, the non-smoothness of the data-fitting term leads to the difficulty in solving the optimization problem of GSRL, and available solvers usually suffer either slow convergence or restrictions on the dictionary. In this paper, we propose a class of efficient solvers for GSRL in a block coordinate descent manner, including group-wise cyclic minimization (GCM) for group-wise orthonormal dictionary and generalized GCM (G-GCM) for general dictionary. Both strict descent property and global convergence are proved. To cope with signal processing applications, the complex-valued multiple measurement vectors (MMV) case is considered. The proposed algorithm can also be used for the fast implementation of methods with theoretical equivalence to GSRL, e.g., GSPICE. Significant superiority in computational efficiency is verified by simulation results.
机译:组广场根套索(GSRL)是一个有前途的基团稀疏回归的工具,因为HyperParameter独立于噪声水平。最近的作品还揭示了与某些统计声音和近双计的方法的联系,例如,基于组 - 稀疏的迭代协方差的估计(Gspice)。然而,数据拟合项的非平滑度导致难以解决GSRL的优化问题,并且可用的求解器通常遭受慢的收敛或在字典上限制。在本文中,我们提出了一类以块坐标血管下降方式为GSRL的高效求解器,包括用于一般字典的基团的正交字典和广义GCM(G-GCM)的群体循环最小化(GCM)。证明了严格的下降财产和全球融合。为了应对信号处理应用,考虑复值的多个测量向量(MMV)案例。该算法还可以用于快速实现具有理论上等当量的方法,例如GSRL,例如Gspice。通过仿真结果验证计算效率的显着优越性。

著录项

  • 来源
    《Signal processing》 |2021年第10期|108142.1-108142.11|共11页
  • 作者单位

    School of Electronics and Information Engineering Harbin Institute of Technology Harbin 150001 China;

    School of Electronics and Information Engineering Harbin Institute of Technology Harbin 150001 China Key Laboratory of Marine Environmental Monitoring and Information Processing Ministry of Industry and Information Technology Harbin 150001 China;

    School of Electronics and Information Engineering Harbin Institute of Technology Harbin 150001 China;

    Key Laboratory of Marine Environmental Monitoring and Information Processing Ministry of Industry and Information Technology Harbin 150001 China School of Information and Electronical Engineering Harbin Institute of Technology (Weihai) Weihai 264209 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Compressive sensing; Group-sparse; Linear regression; Square-root Lasso; Non-smooth convex optimization;

    机译:压缩感;群稀疏;线性回归;方形套索;非平滑凸优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号