首页> 外文期刊>Signal processing >A multiple-model generalized labeled multi-Bernoulli filter based on blocked Gibbs sampling for tracking maneuvering targets
【24h】

A multiple-model generalized labeled multi-Bernoulli filter based on blocked Gibbs sampling for tracking maneuvering targets

机译:基于阻塞GIBBS采样的多模型广义标记多Bernoulli过滤器,用于跟踪机动目标

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient implementation of the multiple-model generalized labeled multi-Bernoulli filter (MM-GLMB) is presented for tracking multiple maneuvering targets. To alleviate the generation of the redundant components, the original two-staged implementations of MM-GLMB filter are integrated into a single step bringing the benefit that only one truncation procedure is required per iteration. In this study, the authors take the convergence behavior of the Gibbs sampling into full consideration to improve the convergence rate. The blocked Gibbs sampling over lattice Gaussian distribution based solution to the implementation of MM-GLMB filter is proposed to greatly relax the computational load. The numerical simulations demonstrate the efficacy of the proposed algorithm with low computational cost.
机译:在本文中,提出了一种有效地实现了多模型广义标记的多Bernouli滤波器(MM-GLMB)以跟踪多个机动目标。 为了减轻冗余组件的产生,MM-GLMB滤波器的原始双分阶段实现被集成到一个步骤中,为每个迭代只需要一个截断过程的益处。 在这项研究中,作者采取了吉布斯抽样的收敛行为,充分考虑以提高收敛速度。 提出基于格式高斯分布的解决方案对MM-GLMB滤波器的实现的阻塞GIBBS采样,从而大大放松计算负荷。 数值模拟展示了所提出的算法具有低计算成本的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号