首页> 外文期刊>Signal processing >Byzantine-robust decentralized stochastic optimization over static and time-varying networks
【24h】

Byzantine-robust decentralized stochastic optimization over static and time-varying networks

机译:静脉稳健的分散的随机性随机优化静态和时变网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the Byzantine-robust stochastic optimization problem defined over decentralized static and time-varying networks, where the agents collaboratively minimize the summation of expectations of stochastic local cost functions, but some of the agents are unreliable due to data corruptions, equipment failures or cyber-attacks. The unreliable agents, which are called as Byzantine agents thereafter, can send faulty values to their neighbors and bias the optimization process. Our key idea to handle the Byzantine attacks is to formulate a total variation (TV) norm-penalized approximation of the Byzantine-free problem, where the penalty term forces the local models of regular agents to be close, but also allows the existence of outliers from the Byzantine agents. A stochastic subgradient method is applied to solve the penalized problem. We prove that the proposed method reaches a neighborhood of the Byzantine-free optimal solution, and the size of neighborhood is determined by the number of Byzantine agents and the network topology. Numerical experiments corroborate the theoretical analysis, as well as demonstrate the robustness of the proposed method to Byzantine attacks and its superior performance comparing to existing methods.
机译:在本文中,我们考虑了拜占庭式稳健的随机优化问题,其定义了分散的静态和时变网络,其中代理协作最小化了随机局部成本函数的期望的总和,但由于数据损坏,一些代理商是不可靠的,设备故障或网络攻击。此后称为Byzantine代理的不可靠的代理可以向其邻居发送错误值并偏置优化过程。我们处理拜占庭攻击的关键主意是制定完全变化(电视)常规近期拜占庭问题的近似值,其中罚款术语迫使当地的常规代理模型接近,但也允许存在异常值来自拜占庭剂。应用随机子射程方法来解决惩罚问题。我们证明,所提出的方法到达拜占庭式无最佳解决方案的邻域,并且邻域的大小由拜占庭代理和网络拓扑的数量决定。数值实验证实了理论分析,以及证明所提出的方法对拜占庭攻击的鲁棒性及其与现有方法相比的卓越性能。

著录项

  • 来源
    《Signal processing》 |2021年第6期|108020.1-108020.16|共16页
  • 作者

    Jie Peng; Weiyu Li; Qing Ling;

  • 作者单位

    School of Computer Science and Engineering and Guangdong Province Key Laboratory of Computational Science Sun Yat-Sen University Guangzhou Guangdong 510006 China;

    School of the Gifted Young University of Science and Technology of China Hefei Anhui 230026 China;

    School of Computer Science and Engineering and Guangdong Province Key Laboratory of Computational Science Sun Yat-Sen University Guangzhou Guangdong 510006 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Decentralized stochastic optimization; Byzantine attacks; Robustness; Static networks; Time-varying networks;

    机译:分散的随机优化;拜占庭袭击;鲁棒性;静态网络;时变网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号