首页> 外文期刊>Signal processing >Single nighttime image dehazing based on image decomposition
【24h】

Single nighttime image dehazing based on image decomposition

机译:基于图像分解的单个夜间图像脱落

获取原文
获取原文并翻译 | 示例

摘要

Dehazing plays an important role in promoting the performance of outdoor computer vision systems. However, existing dehazing methods are targeted to daytime haze scenes, and are not able to improve visual effects for nighttime hazy images due to the unpredictable factors at night. In this paper, an effective single image dehazing framework based on image decomposition is presented for nighttime hazy images. First, the input single nighttime image is separated into the glow-shaped image and the glow-free nighttime hazy image using its relative smoothness constraint. Then, a novel structure-texture-noise decomposition model based on the exponentiated mean local variance is devised to split the nighttime hazy image into a structure layer, a texture layer and a noise layer, in which the structure layer and the texture layer are dehazed based on the maximum reflectance prior and the dark channel prior and enhanced in the gradient domain respectively. Finally, the dehazed structure layer and the enhanced texture layer are fused to produce a dehazed result. Experiments demonstrate that the proposed approach outperforms several state-of-the-art dehazing techniques for nighttime hazy scenes, especially in terms of noise suppression. Besides, the proposed algorithm is also capable of handling daytime hazy images and low-light degraded images.
机译:脱毁在促进户外计算机视觉系统的性能方面发挥着重要作用。然而,现有的脱水方法针对白天阴霾场景,并且由于夜间不可预测的因素,无法提高夜间朦胧图像的可视效果。本文介绍了一种基于图像分解的有效单图像去吸附框架,用于夜间朦胧图像。首先,使用其相对平滑度约束,输入单夜间图像分离为闪光形图像和无发电的夜间朦胧图像。然后,设计了一种基于指数化平均局部方差的新颖结构 - 纹理噪声分解模型,以将夜间朦胧图像分成结构层,纹理层和噪声层,其中结构层和纹理层被去吸附基于先前的最大反射率和暗信道,分别在梯度域中增强。最后,融合了去疏化的结构层和增强型纹理层以产生去脱色结果。实验表明,所提出的方法优于夜间朦胧场景的几种最先进的脱水技术,特别是在噪声抑制方面。此外,所提出的算法还能够处理白天朦胧图像和低光降级图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号