首页> 外文期刊>Signal processing >Signal-domain Kalman filtering: An approach for maneuvering target surveillance with wideband radar
【24h】

Signal-domain Kalman filtering: An approach for maneuvering target surveillance with wideband radar

机译:信号域卡尔曼滤波:用宽带雷达操纵目标监视的方法

获取原文
获取原文并翻译 | 示例

摘要

As unmanned aerial vehicles (UAVs), owing to their low cost and wide variety of applications, become increasingly indispensable to modern society, and monitoring their illegal use through multichannel radar tracking has drawn widespread attention. Unfortunately, traditional tracking methods face challenges due to the UAV target with high-maneuverability and low-observability. In addition, the traditional measurements suffer some significant information loss because of their treatments like thresholding, clustering and peak sampling, which decreases tracking performance. In order to track UAV precisely, we propose a novel UAV tracking method based on the joint estimation of range and direction of arrival (DOA) in this paper. A complex-valued reference signal is introduced by coherently integrating in sliding windows to obtain SNR gain and preserve the complete structure and motion information of UAV. Besides motion state, the complex-valued reference signal is also utilized to predict the current return signal based on dynamic equation, and then a Bayes based method is derived to jointly estimate the range and DOA errors by comparing reference signal and return signal. In order to adapt to the maneuverable feature, a precise measurement model for motion variables is constructed to realize tracking combined with Kalman filter. Due to the utilization of the complex-valued reference signal and the precise measurement model, the proposed method has outstanding performance in the scene of low SNR and high maneuverability. In addition, there is no any information loss when the raw data is used to realize estimating and tracking. Finally, simulated and real-measured experiments confirm its remarkable performance.
机译:由于凭借其低成本和各种各样的应用,由于其低成本和各种各样的应用,对现代社会变得越来越不可或缺,并通过多通道雷达跟踪监测其非法使用已经引起了广泛的关注。不幸的是,传统的跟踪方法由于UAV目标具有高机动性和低可观察性而面临挑战。此外,传统的测量结果由于它们的治疗而遭受了一些重要的信息损失,例如阈值,聚类和峰值采样,这降低了跟踪性能。为了准确地跟踪无人机,我们提出了一种基于本文的抵达范围和方向(DOA)的联合估计的新型UAV跟踪方法。通过在滑动窗口中相干地集成复位值的参考信号,以获得SNR增益并保留UAV的完整结构和运动信息。除了运动状态外,还利用复值的参考信号来预测基于动态方程的电流返回信号,然后通过比较参考信号和返回信号来导出基于贝叶斯的方法来联合估计范围和DOA误差。为了适应可动性的特征,构造了一种用于运动变量的精确测量模型,以实现跟踪与卡尔曼滤波器相结合。由于利用复值参考信号和精确的测量模型,所提出的方法在低SNR和高机动性方面具有出色的性能。此外,当原始数据用于实现估计和跟踪时,没有任何信息丢失。最后,模拟和实际测量的实验证实了其显着性能。

著录项

  • 来源
    《Signal processing》 |2020年第12期|107724.1-107724.18|共18页
  • 作者单位

    The National Laboratory of Radar Signal Processing China The Collaborative Innovation Center of Information Sensing and Understanding China Shaanxi Innovation Team Project Xidian University China;

    The School of Electronics and Communication Engineering Sun Yat-sen University (Shenzhen) China;

    The National Laboratory of Radar Signal Processing China The Collaborative Innovation Center of Information Sensing and Understanding China Shaanxi Innovation Team Project Xidian University China;

    The National Laboratory of Radar Signal Processing China The Collaborative Innovation Center of Information Sensing and Understanding China Shaanxi Innovation Team Project Xidian University China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    UAV tracking; Joint range and DOA tracking; Kalman filter;

    机译:无人机跟踪;联合范围和DOA跟踪;卡尔曼筛选;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号