首页> 外文期刊>Signal processing >A Multiparametric Class of Low-complexity Transforms for Image and Video Coding
【24h】

A Multiparametric Class of Low-complexity Transforms for Image and Video Coding

机译:用于图像和视频编码的低复杂性变换的多分类类

获取原文
获取原文并翻译 | 示例

摘要

Discrete transforms play an important role in many signal processing applications, and low-complexity alternatives for classical transforms became popular in recent years. Particularly, the discrete cosine transform (DCT) has proven to be convenient for data compression, being employed in well-known image and video coding standards such as JPEG, H.264, and the recent high efficiency video coding (HEVC). In this paper, we introduce a new class of low-complexity 8-point DCT approximations based on a series of works published by Bouguezel, Ahmed and Swamy. Also, a multiparametric fast algorithm that encompasses both known and novel transforms is derived. We select the best-performing DCT approximations after solving a multicriteria optimization problem, and submit them to a scaling method for obtaining larger size transforms. We assess these DCT approximations in both JPEG-like image compression and video coding experiments. We show that the optimal DCT approximations present compelling results in terms of coding efficiency and image quality metrics, and require only few addition or bit-shifting operations, being suitable for low-complexity and low-power systems.
机译:离散变换在许多信号处理应用中发挥着重要作用,近年来古典变换的低复杂性替代品变得流行。特别地,离散余弦变换(DCT)已经证明是方便的数据压缩,在众所周知的图像和视频编码标准中使用,例如JPEG,H.264和最近的高效视频编码(HEVC)。在本文中,我们介绍了一系列新的低复杂性8点DCT近似,基于Bouguezel,Ahmed和Swamy发布的一系列作品。此外,推导了一种包含已知和新型变换的多分类快速算法。在解决多轨道优化问题之后,选择最佳性能的DCT近似,并将其提交到用于获得更大尺寸变换的缩放方法。我们在JPEG样图像压缩和视频编码实验中评估这些DCT近似。我们表明,最佳DCT近似值在编码效率和图像质量指标方面存在令人信服的结果,并且仅需要少量加法或位移操作,适用于低复杂性和低功率系统。

著录项

  • 来源
    《Signal processing》 |2020年第11期|107685.1-107685.12|共12页
  • 作者单位

    Instituto de Matematica e Estatistica Universidade de Sao Paulo Sao Paulo Brazil Programa de Pos-Graduacao em Engenharia Eletrica Universidade Federal de Pernambuco Recife Brazil;

    Centro de Ciencias Computacionais Universidade Federal do Rio Grande Rio Grande Brazil;

    Departamento de Estatistica and LACESM Universidade Federal de Santa Maria Santa Maria Brazil;

    Signal Processing Group Departamento de Estatistica Universidade Federal de Pernambuco Recife Brazil Department of Electrical and Computer Engineering University of Calgary Calgary AB Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Approximate transforms; Arithmetic complexity; Discrete cosine transform; Image compression; Video coding;

    机译:近似变换;算术复杂性;离散余弦变换;图像压缩;视频编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号