首页> 外文期刊>Signal processing >Class specific or shared? A cascaded dictionary learning framework for image classification
【24h】

Class specific or shared? A cascaded dictionary learning framework for image classification

机译:类具体或分享?图像分类的级联词典学习框架

获取原文
获取原文并翻译 | 示例

摘要

Dictionary learning methods can be split into: i) class specific dictionary learning ii) class shared dictionary learning. The difference between the two categories is how to use discriminative information. With the first category, samples of different classes are mapped into different subspaces, which leads to some redundancy with the class specific base vectors. While for the second category, the samples in each specific class can not be described accurately. In this paper, we first propose a novel class shared dictionary learning method named label embedded dictionary learning (LEDL). It is the improvement based on LCKSVD, which is easier to find out the optimal solution. Then we propose a novel framework named cascaded dictionary learning framework (CDLF) to combine the specific dictionary learning with shared dictionary learning to describe the feature to boost the performance of classification sufficiently. Extensive experimental results on six benchmark datasets illustrate that our methods are capable of achieving superior performance compared to several state-of-art classification algorithms.
机译:字典学习方法可以分成:i)类特定字典学习II)类共享词典学习。两类之间的差异是如何使用歧视信息。使用第一个类别,不同类别的样本被映射到不同的子空间中,这导致与类特定基础向量的一些冗余。虽然对于第二类,但不能准确描述每个特定类中的样本。在本文中,我们首先提出了一个名为标签嵌入式字典学习(LEDL)的小说类共享词典学习方法。这是基于LCKSVD的改进,这更易于找出最佳解决方案。然后我们提出一个名为级联字典学习框架(CDLF)的小说框架将特定的字典学习与共享字典学习组合来描述该特征,以便充分提高分类的性能。六个基准数据集的广泛实验结果表明,与若干最先进的分类算法相比,我们的方法能够实现卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号