首页> 外文期刊>Signal processing >Dynamic pattern matching with multiple queries on large scale data streams
【24h】

Dynamic pattern matching with multiple queries on large scale data streams

机译:与大规模数据流上的多个查询匹配的动态模式

获取原文
获取原文并翻译 | 示例

摘要

Similarity search in data streams is an important but challenging task in many practical areas where realtime pattern retrieval is required. Dynamic and fast updating data streams are often subject to outliers, noise and potential distortions in amplitude and time dimensions. Such conditions typically lead to a failure of existing pattern matching algorithms and to inability to retrieve required patterns from the stream. The main reason for such failures is the limitation of data normalization utilized in the majority of methods. Another reason is the lack of means to consider multiple examples of the same template to account for possible variations of the query signal. In this paper, we propose a dynamic normalization approach that allows bringing streaming signal subsequences to the scale of the query template. This significantly improves pattern retrieval capabilities, especially when sampling variance or time distortions are present. We further develop a pattern matching approach utilizing the proposed normalization mechanism and extend it for the case when multiple examples of a query template are available. Multiple synthetic and real data experiments demonstrate that this allows to considerably improve the pattern matching rate for distorted data streams, providing real time performance.
机译:在需要实时模式检索的许多实际区域中,数据流中的相似性搜索是一个重要但具有挑战性的任务。动态和快速更新数据流通常受到异常值,噪声和幅度尺寸的潜在扭曲。这种条件通常导致现有模式匹配算法的失败,并且无法从流中检索所需的图案。此类故障的主要原因是大多数方法中使用的数据标准化的限制。另一个原因是缺乏考虑相同模板的多个示例的手段,以解释查询信号的可能变化。在本文中,我们提出了一种动态归一化方法,允许将流信号子序列带到查询模板的比例。这显着提高了模式检索能力,尤其是当存在采样方差或存在时间失真时。我们进一步开发了利用所提出的归一化机制的模式匹配方法,并在查询模板的多个示例可用时将其扩展。多种合成和实际数据实验表明,这允许大大提高扭曲数据流的模式匹配速率,提供实时性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号