首页> 外文期刊>Signal processing >Steady-state mean-square deviation analysis of improved ℓ_0-norm-constraint LMS algorithm for sparse system identification
【24h】

Steady-state mean-square deviation analysis of improved ℓ_0-norm-constraint LMS algorithm for sparse system identification

机译:改进ℓ_0 - 常规约束LMS算法稳态平均方偏差分析稀疏系统识别

获取原文
获取原文并翻译 | 示例

摘要

The ℓ_0-norm-constraint LMS (ℓ_0-LMS) algorithm is one of the widely used sparse LMS algorithms for the identification of sparse system, and its performance is quite attractive compared to other precursors. However, ℓ_0-LMS is still confronted with some limitations on the optimal parameter selection and the estimated coefficient accuracy of sparse system identification. In this paper, we proposed an improved ℓ_0-LMS (ℓ_0-ILMS) algorithm to address these limitations. The convergence condition and the parameter selection rules for optimal steady-state mean-square deviation (MSD) of ℓ_0-'LMS are discussed. Compared with ℓ_0-LMS, the steady-state MSD of ℓ_0-ILMS is lower and less sensitive to the tuning parameters and measurement noise power. Numerical simulations comparing the performance of standard LMS, ℓ_0-LMS and ℓ_0-ILMS demonstrate the effectiveness of ℓ_0-ILMS.
机译:ℓ_0-norm-constraint lms(ℓ_0-lms)算法是广泛使用的稀疏LMS算法之一,用于识别稀疏系统,与其他前体相比,其性能非常有吸引力。然而,ℓ_0-LMS仍然遇到关于最佳参数选择的一些限制和稀疏系统识别的估计系数精度。在本文中,我们提出了一种改进的ℓ_0-lms(ℓ_0-ilms)算法来解决这些限制。讨论了ℓ_0-'lms的最佳稳态均方偏差(MSD)的收敛条件和参数选择规则。与ℓ_0-LMS相比,ℓ_0-ILMS的稳态MSD对调谐参数和测量噪声功率较低且不敏感。数值模拟比较标准LMS,χ_0-LMS和ℓ_0-ILMS的性能证明了χ_0-ILMS的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号