首页> 外文期刊>Signal processing >Perceptual objective quality assessment of stereoscopic stitched images
【24h】

Perceptual objective quality assessment of stereoscopic stitched images

机译:立体拼接图像的感知客观质量评估

获取原文
获取原文并翻译 | 示例

摘要

Large view stereoscopic images can provide users with immersive depth experience. Image stitching techniques aim to obtain large view stitched images, and there have been various image stitching algorithms proposed recently. However, there is still no effective objective quality assessment for stereoscopic stitched images. In this paper, we propose a new perceptual objective stereoscopic stitched image quality assessment (S-SIQA) method by considering different distortion types in the existing stitching methods, including color distortion, ghost distortion, structure distortion(shape distortion, information loss), and disparity distortion. The quality evaluation methods for these distortion types are designed by using the color difference coefficient, points distance, matched line inclination degree, information loss, and disparity difference. Then we fuse these measures in the proposed S-SIQA model by an optimally weighted linear combination. In addition, to evaluate the performance of the proposed S-SIQA, we build a subjective quality assessment database for stereoscopic stitched images. Experimental results have confirmed the proposed method can effectively measure the perceptual quality of stereoscopic stitched images.
机译:大视图立体图像可以为用户提供身临其境的深度体验。图像拼接技术旨在获得大视野的拼接图像,并且最近提出了各种图像拼接算法。但是,对于立体拼接图像,仍然没有有效的客观质量评估。本文提出了一种新的感知客观立体拼接图像质量评估(S-SIQA)方法,该方法考虑了现有拼接方法中的不同失真类型,包括颜色失真,重影失真,结构失真(形状失真,信息丢失)以及视差失真。通过使用色差系数,点距,匹配线的倾斜度,信息丢失和视差来设计这些失真类型的质量评估方法。然后,我们通过最佳加权线性组合将这些度量融合到建议的S-SIQA模型中。此外,为了评估建议的S-SIQA的性能,我们为立体拼接图像建立了一个主观质量评估数据库。实验结果证实了该方法能够有效地测量立体拼接图像的感知质量。

著录项

  • 来源
    《Signal processing》 |2020年第7期|107541.1-107541.10|共10页
  • 作者单位

    School of Computer and Control Engineering Yantai University Yantai 264005 China;

    School of Biomedical Engineering Shenzhen University Shenzhen 518060 China;

    School of Information Technology Jiangxi University of Finance and Economics Nanchang 330032 China;

    Faculty of Information Science and Engineering Ningbo University Ningbo 315211 China;

    School of Computer Science China University of Geosciences Wuhan 430074 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stereoscopic image; Quality assessment; Stitched image; Image stitching;

    机译:立体影像;质量评估;拼接图像;图像拼接;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号