首页> 外文期刊>Signal processing >Coincidence of the Rao Test, Wald Test and GLRT for anomaly detection in hyperspectral imagery
【24h】

Coincidence of the Rao Test, Wald Test and GLRT for anomaly detection in hyperspectral imagery

机译:高光谱图像中异常检测的Rao测试,Wald测试和GLRT的重合

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection methods are designed to detect targets (small anomalies) without a priori information on the target spectral signature. In this letter, we deal with the problem of anomaly detection for hyperspectral images based on the Gaussian model assuming that the background obeys a real-valued Gaussian multivariate distribution with unknown covariance matrix. This model is widely used in hyperspectral images. We derive the corresponding Rao and Wald tests, and show that both the two tests are equivalent to the generalized likelihood ratio test.
机译:异常检测方法旨在检测目标(小的异常),而无需有关目标光谱特征的先验信息。在这封信中,我们假设背景服从具有未知协方差矩阵的实值高斯多元分布,并基于高斯模型处理高光谱图像的异常检测问题。该模型广泛用于高光谱图像中。我们推导了相应的Rao和Wald检验,并证明这两个检验都等同于广义似然比检验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号