首页> 外文期刊>Signal processing >Rethinking sketching as sampling: A graph signal processing approach
【24h】

Rethinking sketching as sampling: A graph signal processing approach

机译:重新考虑草图作为采样:一种图形信号处理方法

获取原文
获取原文并翻译 | 示例

摘要

Sampling of signals belonging to a low-dimensional subspace has well-documented merits for dimensionality reduction, limited memory storage, and online processing of streaming network data. When the subspace is known, these signals can be modeled as bandlimited graph signals. Most existing sampling methods are designed to minimize the error incurred when reconstructing the original signal from its samples. Oftentimes these parsimonious signals serve as inputs to computationally-intensive linear operators. Hence, interest shifts from reconstructing the signal itself towards approximating the output of the prescribed linear operator efficiently. In this context, we propose a novel sampling scheme that leverages graph signal processing, exploiting the low-dimensional (bandlimited) structure of the input as well as the transformation whose output we wish to approximate. We formulate problems to jointly optimize sample selection and a sketch of the target linear transformation, so when the latter is applied to the sampled input signal the result is close to the desired output. Similar sketching as sampling ideas are also shown effective in the context of linear inverse problems. Because these designs are carried out off line, the resulting sampling plus reduced-complexity processing pipeline is particularly useful for data that are acquired or processed in a sequential fashion, where the linear operator has to be applied fast and repeatedly to successive inputs or response signals. Numerical tests showing the effectiveness of the proposed algorithms include classification of handwritten digits from as few as 20 out of 784 pixels in the input images and selection of sensors from a network deployed to carry out a distributed parameter estimation task.
机译:属于低维子空间的信号采样在减少维数,有限的内存存储以及流网络数据的在线处理方面具有充分证明的优点。当子空间已知时,可以将这些信号建模为带限图信号。大多数现有的采样方法都旨在最大程度地减少从采样中重建原始信号时产生的误差。通常,这些简约信号用作计算密集型线性算子的输入。因此,关注点从重构信号本身转向有效地逼近指定线性算子的输出。在这种情况下,我们提出了一种新颖的采样方案,该方案利用了图形信号处理,利用了输入的低维(带限)结构以及我们希望近似其输出的变换。我们提出问题以共同优化样本选择和目标线性变换的草图,因此当将后者应用于采样的输入信号时,结果接近于所需的输出。在线性反问题的背景下,与采样思路类似的草图也显示有效。由于这些设计是离线进行的,因此所得的采样加降低复杂性的处理流水线对于以顺序方式获取或处理的数据特别有用,在这种情况下,线性运算符必须快速且重复地应用于连续的输入或响应信号。显示所提出算法有效性的数值测试包括从输入图像中784个像素中的少至20个中的手写数字进行分类,以及从部署用于执行分布式参数估计任务的网络中选择传感器。

著录项

  • 来源
    《Signal processing》 |2020年第4期|107404.1-107404.15|共15页
  • 作者

  • 作者单位

    Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia USA;

    Department of Signal Theory and Comms. King Juan Carlos University Madrid Spain;

    Department of Electrical and Computer Engineering University of Rochester Rochester USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sketching; Sampling; Streaming; Linear transforms; Linear inverse problems; Graph signal processing;

    机译:素描;采样;流媒体;线性变换;线性逆问题;图形信号处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号